人工内耳スピーチプロセッサ出力信号の疑似ソナグラム表示

○森 浩一 1) 田中章浩 1,2) 小泉敏三 1,2) 佐川泰広 1)
1) 国立身体障害者リハセンター研究所，2) 奈良県立医科大学耳鼻咽喉科

【はじめに】人工内耳の効果は個人差が大きいが、その原因は不明であることが多い。ま、人工内耳のスピーチ・プロセッサをプログラムした結果は、自覚的報告以外に、期待通りのプログラムになっているかどうか容易に確認できる手段がない。これらの観点からスピーチ・プロセッサの出力を疑似ソナグラムとして表示する方法を開発したので報告する。このような手段を用いることで、人工内耳へ適切な信号が送られていることを、おそらくではあるが確認でき、音刺激と自覚的聴取その他の結果との対応がはっきりし、より良いマップと訓練のヒントにもなると考えられる。

【方法】被験者：中途失聴人工内耳装用成人4名（男女各2名、平均66歳、装用1〜3年）
コード化方式はSPEAKが3名、ACEが1名。マップは各被験者の常用のものを利用。
装置：コクレア社CPS人工内耳プログラム装置一式，N24 ESPrit，NIC開発システム。
音刺激：(1) 東京方言話者によって，/asa/ないし/aka/を低音ないし高音のアクセントをつけて発話・録音したものをスピーカより提示、再生レベルは、被験者毎にMCLとその+10 dBから15 dB。
(2) 中心周波数1 kHz，1/3オクターブ帯域雑音で2.5 Hzの100%振幅変調をかけたものと、同じ中心周波数の連続振音（5 Hzで±10%の周波数変調）提示レベルは、1 dBステップ上昇法で決定した自覚閾値（0 dB SL）に対して、+10 dB SLから−20 dB SLの5 dBステップ。
手続き：再生音のレベルを確認後に人工内耳体外（SP）を被験者から外し、そのアンテナをCPS前面の受信部分に装着し、RxFrames.exe ([1]に含まれる)をCPSに接続した計算機上で起動し、スピーチ・プロセッサの高周波出力を捉えた。結果はチャネル番号と電流レベル、刺激時間等を並べたテキスト・ファイルとして得られた。
データ処理：得られた出力ファイルを Igor Pro 4 (WaveMetrics)に読み込み、時間を横軸に、電極を縦軸にして、電極毎の T-Cレベルで正規化した電流レベルを、虹色系列ないし灰色濃度系列として、スペクトログラム（ソナグラム）様に表示した。
【結果】(1) 音声のソナグラムに類似のパターンが見られた。ただし、基本周波数とその倍音構造や喉頭パルスは見られない。子音/s/，/k/に対応する信号も観察された（図1，2）が、SPEAKでは低音压ではっきりしなかった。子音直後の母音部分に調音結合と思われる変化は見られ、アクセントは、ソナグラム上は強弱としての違いが目立った。
(2) 自覚閾値と同じ0 dB SL以上では、1 kHzを中心とした電極への出力信号がはっきり観察された（図3）。一方，−10 dB SLまではTレベル以上の信号が低頻度ながら出していった例があった（図4）。これ以下の音圧では測定室の暗騒音のために評価不能であった。
【考察】人工内耳出力を観測する方法として、人工内耳の体内埋め込み部分の電気的シミュレータをスピーチ・プロセッサに結合させ、オシロスコープで観察するなどがある。このようにして得られた出力の疑似ソナグラム表示はすでに発表されている[2]が、その後は類似の研究は行われていない。実時間で刺激信号が電極別にパネルに表示される装置（CPS，コクレア社）が臨床に広く普及しているものの、定量的観測には向かない。しか
し，同装置でプログラムRxFrames.exe [1]を実行することでスピーチ・プロセッサの高周波出力を捉えることができ、今回はこれを利用した。以上の方法はすべて生体内の電流出力そのものを観測するものではないので、実際には生体内でのクロストークや骨化等で神経への信号はさらに劣化する可能性がある。

(1)子音/s/は4 kHz付近以上の高音部で顕著であったが、低音域ではその部分が見えなくなったり、音価判断の情報としては使われていない可能性も考えられた。アクセントについては、前後の音節の影響の違い以外にはっきりした共通の変化を見いだせなかったが、聴取判断の手かかりを見つけたためには、音価以上のより定量的な解析が必要と思われる。

(2)被験者によっては、自覚閾値下でも人工内耳の出力が出ることが判明した。Tレベルは超れているので脳波は刺激されると思われるが、頻度が低いなどの理由で自覚されないようである。このことは、閾値下で脳反応が観測されていること[3]と整合する。

なお、今回使用したRxFrames.exeを含む[1]の入手には研究契約が必要である。抄録執筆時点では契約者以外の使用は認められていないが、対応策は検討中とのことである。今後、各社の人工内耳について、刺激出力を電極ごとにある程度定量的にモニターできる何らかの手段が提供されることが望まれる。


図1. 「麻」をSPEAKでコード化した出力。
右は中心周波数 Hz（0は不使用音極）。
図2. 同様に「赤」をACEでコード化。
図3. 自覚閾値の振音による人工内耳出力。
次図共、濃淡は見やすように濃くした。
図4. 自覚閾値-10 dBの振音による出力。