音場での音量検査における負荷雑音提示方法による音量明瞭度の差異

○ 亀井昌代・大河由佳・小田島葉子・佐藤宏昭（岩手医大）
米本 清（岩手県立大）・村井和夫（岩手労災）

[はじめに]
補聴器の装用効果を客観的に評価する場合、音場での音量による検査は必須のものと考えられる。また、音量の検査はできるだけ実音環境に近い条件で行うことが望ましいと考えられる。音場での雑音負荷音量明瞭度検査の方法について ISO 8253-3 には、雑音提示方法として被験者の前方左右 45 度からの無相関雑音、または前方後左右 45 度からの無相関雑音による提示方法との記載がある。今回の目的はこの 2 種類の雑音提示方法にどのような差がみられ、どのようなときに施行するのがよいのか。また、ISO 8253-3 に記載されている雑音提示方法と、比較的小さい防音室での音場雑音負荷音聴力検査が可能であるような状況とでは音量明瞭度にどのような差がみられるか。この 2 点について補聴器を装用している感音難聴症例を対象に検討した。

[方法]
測定に使用した検査室は ISO 8253-2 の準自由音場条件を満たしており、暗騒音は 19dB(A)以下であった。ISO 8253-3 に示された手順で音量聴力検査を施行した。検査音量は被験者正面のスピーカから 70dBSP の音圧にて提示した。検査に用いた語表は日本聴覚医学会作成 67S 語表 20 語である。負荷雑音は加重不規則雑音（JIS T1201-2 2000）を用いた。雑音提示条件は 1）被験者の前方左右 45 度に設置した 2 本のスピーカからそれぞれ独立した音源からの音量を提示する無相関雑音（条件 A）、2）被験者の前後左右 45 度に設置した 4 本のスピーカからそれぞれ独立した音源からの音量を提示する無相関雑音（条件 B）、3）被験者正面に設置した 1 個のスピーカからの音量提示、の 3 条件とした（条件 C）（図−1）。雑音提示音圧は検査音量との比（S/N）が 0、+5、+10dB となるように設定した。なお各スピーカの高さはほぼ外耳孔の高さとし、被験者の基準点とスピーカの距離は各々 1 m とした。

[対象]
両側左右対称性の感音難聴症例 41 例（男性 14 例、女性 27 例）、年齢は 35 歳から 83 歳（平均年齢 66 歳）であった。対象の 5 周波数平均聴力レベルは 51dB（図−2）、レシーバによる平均最大音量明瞭度は 80%であった。補聴器装用条件は片耳 25 例、両耳装用 16 例、補聴器形は補聴器 30 例（内デジタル補聴器 9 例）、耳掛形 11 例であった。前記対象について聴覚、補聴器装用状態について測定した。

[結果]
裸耳、補聴器装用時とも音場での音量明瞭度に個人差が大きい傾向がみられた。比較のため暗騒音下の音量明瞭度を 1 とし、その比を求めて検討した。
①聴覚における音量明瞭度比は雑音提示条件 A、C、B の順に低く S/N 0dB において t 検定にて有意差をみとめた。（図−3）
②補聴時における音量明瞭度比は、聴覚補聴器の群では聴覚同様に条件 A、C で低く S/N 0dB で A と B、C と B、A と C の間に有意差をみとめた（図−4）。耳掛補聴器群の平均音量明瞭度比は条件 B、C または A の順に低く S/N−10dB の A と B、S/N 0dB で B と C、C
とAの間にそれぞれ有意差がみられた（図-5）。

【考察】

聴覚補聴器は聴覚と同様の評価であった。これは、前後左右4本スピーカからの無相関雑音混入条件では、耳介により雑音レベルが減衰される。従って、同じS/Nでも前方2本スピーカからの無相関雑音混入条件に比較し音響学的影響は高くなると考えられた。それに対して耳掛形補聴器は後方からの雑音の影響を受けやすい。今後、指向性機能のある補聴器の他覚的評価に対し雑音混入方法を検討する必要性があると考えられた。

図-1 測定機器レイアウト　図-2 重ね合わせオージオグラム

図-3 語音明瞭度比（聴覚）　図-4 語音明瞭度比（聴覚補聴時 n=30）　図-5 語音明瞭度比（耳掛形補聴時 n=11）