Dietary Effect of Conjugated Linoleic Acid on Lipid Levels in White Adipose Tissue of Sprague-Dawley Rats

Masao YAMASAKI1, Keiko MANSHO1, Hiroko MISHIMA1, Masaaki KASAI2, Michihiro Sugano3, Hirofumi TACHIBANA1, and Koji YAMADA1,†

1Laboratory of Food Science, Department of Food Science and Technology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
2Nagoya Factory, Rinoru Oil Mills Co. Ltd., 37-15 Shiomi-cho, Minato-ku, Nagoya 455-0028, Japan
3Faculty of Human Life Sciences, Prefectural University of Kumamoto, Kumamoto 862-8502, Japan

Received November 30, 1998; Accepted February 2, 1999

We examined the effect of dietary conjugated linoleic acid (CLA) on lipid parameters in the liver, white adipose tissue (WAT) and brown adipose tissue (BAT) of Sprague-Dawley rats and found that it reduced the levels of triglycerides and non-esterified fatty acid in the liver and WAT without significant change in the BAT lipid levels. These results suggest that CLA has an obesity-preventing action.

Key words: conjugated linoleic acid; white adipose tissue; brown adipose tissue; liver

Conjugated linoleic acid (CLA) is a geometric term for the positional and structural isomers of linoleic acid. CLA has been reported to have anti-carcinogenic,1-3 anti-atherosclerotic,4,5 anti-diabetic5 and anti-allergic activities.6,7 In addition, CLA has been reported to reduce body fats,7 and to decrease the weight of white adipose tissue (WAT) in rats.8 WAT stores the excess energy from the diet as neutral lipids and supplies this energy as free fatty acid and glycerol when there is an inadequate supply of energy. The WAT adipocytes usually contain 0.5-0.9 μg (the highest limit is 1.2 μg) of lipids per cell and their diameters are 10-200 μm. The number of adipocytes is usually around 300 billion while 400-600 billion cells per person are common with obesity. In addition, the weight of WAT can constitute 30-40% of body weight in obese persons against approximately 20% in normal person.9 In the present paper, we report the dietary effect of CLA on the lipid metabolism of Sprague-Dawley rats to clarify the mechanism for the fat-reducing activity of CLA.

CLA and safflower oil (SAF) were supplied by Rinoru Oil Mills Co. (Nagoya, Japan). CLA was composed of 34.7% (c-9, t-11 and t-9, c-11 isomers), 35.6% (t-10, c-12), 2.3% (c-9, c-11 and c-10, c-12) and 1.6% (t-9, t-11 and t-10, t-12) isomers of octadecadienoic acid. Four-week-old male Sprague-Dawley rats (Seiwa Experimental Animals, Fukuoka Japan) were acclimatized in an air-conditioned room for one week. The rats were then separated into three groups of six animals each who were given free access to an AIN-93G diet. This diet contained 7% SAF (control group), 6% SAF+1% CLA (1% CLA group) or 5% SAF+2% CLA (2% CLA group). The food intake and body weight were recorded every other day. After 3 weeks of feeding, the rats were killed by withdrawing blood from the abdominal aorta under light diethyl ether anesthesia. After the collecting blood, WAT, BAT and the liver were excised. The sera and tissues were stored at −80°C before the analysis. Lipid extraction from these samples was performed by the method of Folch et al.10 The triglyceride (TG), phospholipid (PL) and non-esterified fatty acid (NEFA) levels in WAT, BAT, the liver and serum were analyzed by using enzymatic kits (Wako Pure Chemicals, Osaka, Japan).

There was no significant difference among the dietary groups in their food intake, body weight, weight gain during the feeding period, food efficiency, and tissue weights of WAT, BAT and the liver (data not shown). On the other hand, CLA significantly decreased the WAT TG level, as shown in Table 1. In the case of PL, CLA had no significant effect in WAT (Table 1), nor in BAT and the serum (data not shown). The liver TG level tended to be decreased by CLA administration. The serum TG level in the 1% group was significantly lower than that of the control group, while the level of the 2% CLA group was intermediate between the two other groups (Fig. 1). CLA markedly reduced the serum and liver NEFA levels in a dose-dependent manner as shown in Fig. 1. In the case of WAT, the NEFA level of the 1% CLA group was significantly lower than that of the control group.

Table 1. Effect of Conjugated Linoleic Acid on Lipid Parameters in the White Adipose Tissue of Sprague-Dawley Rats

<table>
<thead>
<tr>
<th>Group</th>
<th>Total lipids (mg/g of tissue)</th>
<th>TG (mg/g of tissue)</th>
<th>PL (μEq/g of tissue)</th>
<th>NEFA (μEq/g of tissue)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>596 ± 18</td>
<td>344 ± 15</td>
<td>21.7 ± 4.6</td>
<td>13.7 ± 1.3</td>
</tr>
<tr>
<td>1% CLA</td>
<td>636 ± 19</td>
<td>281 ± 31</td>
<td>20.3 ± 3.4</td>
<td>8.2 ± 0.5</td>
</tr>
<tr>
<td>2% CLA</td>
<td>652 ± 4</td>
<td>219 ± 30</td>
<td>19.5 ± 2.9</td>
<td>10.9 ± 0.8</td>
</tr>
</tbody>
</table>

Each value is the mean ± SE for 6 rats.

Abbreviations: CLA, conjugated linoleic acid; WAT, white adipose tissue; BAT, brown adipose tissue; TG, triglyceride; PL, phospholipid; NEFA, non-esterified fatty acid; SAF, safflower oil; PPAR, peroxisome proliferator-activated receptor; TZD, thiazolidinedione

1 To whom correspondence should be addressed. Tel/Fax: +81-92-642-3007; E-mail: yamadako@agr.kyushu-u.ac.jp
Fig. 1. Effect of Dietary Conjugated Linoleic Acid on the Triglyceride and Non-esterified Fatty Acid Levels in Various Tissues and Serum. Values are expressed relative to the control value for each tissue and serum. Each data value is the mean ± SE for 6 rats. a-c: Values not sharing a common letter are significantly different at p < 0.05.

trol group, while the level of the 2% CLA group was intermediate between the two other groups.

In obesity, the lipid content of each adipocyte is increased and the cells become hypertrophic and cause hyperplasty. Thus, excess storage of TG in adipocytes is a feature of obesity. The results in this report suggest that dietary CLA would reduce the risk of hypertrophy and/or hyperplasty. NEFA serves as lipid fuel released from adipocytes by lipolysis into the circulation system. The stimulants of NEFA release are insulin,catecholamines, the growth hormone and cortisol. The release of NEFA from upper-body subcutaneous fat has been related to the level of the upper-body fat mass. An excess NEFA level could be a risk factor of obesity because it induced a reduction in insulin sensitivity by lowering the potential for glycogen synthesis, hypertriglyceridemia and reduction of insulin clearance by hepatocytes. The reduction of the serum TG and WAT NEFA levels was more marked in the 1% CLA group than in the 2% CLA group. It is thus considered that the optimum dose would be that to exert an effect on particular lipid parameter. In the present study, dietary CLA reduced NEFA levels in the serum and liver, so dietary CLA could lighten the risk of obesity and related disease. BAT has thermogenic activity resulting from uncoupling protein, and its dysfunction or reduction of its function could cause obesity and hypertriglyceridemia. It has been reported that fasting also caused a reduced BAT function and, as a result, the PL and TG levels were increased and the weight was decreased. In this present study, CLA did not affect BAT lipid levels and weight, so it is considered that CLA did not affect the BAT function.

It is believed that peroxisome proliferator-activated receptor (PPAR) is a key factor for adipocytes differentiation. Thiazolidinedione (TZD) is an insulin sensitizer and could induce the differentiation of preadipocytes to mature adipocytes. TZD has been reported to be a ligand of PPAR, and it has been considered that TZD functioned via PPAR activation. On the other hand, it has been reported that CLA normalized impaired glucose tolerance like TZD and that CLA also elevated the levels of mRNA belonging to PPAR-responsive genes. Consequently, CLA could regulate adipocyte differentiation via PPARy regulation and exert a preventive effect on obesity.

In conclusion, CLA reduced the accumulated lipid levels in WAT and reduced the level of NEFA. Thus, dietary CLA could be an anti-obesity food component which would regulate diverse effects via PPAR activation.

References
11) Jensen, M. D., Caruso, M., Helling, V., and Miles, J. M., Insulin regulation of lipolysis in nonobese and IDDM subjects. Dia-


16) Boden, G., Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes, 46, 3-10 (1997).


