Synthesis of All Four Possible Stereoisomers of 5,9-Dimethylpentadecane, the Major Sex Pheromone Component of the Coffee Leaf Miner Moth, *Perileucoptera coffeella*

Shigefumi Kuwahara,† Ting Liang, Walter Soares Leal, Jiro Ishikawa, and Osamu Kodama

1Laboratory of Agricultural Chemicals, Faculty of Agriculture, Ibaraki University, Ami-machi, Inashiki-gun, Ibaraki 300-0393, Japan
2Laboratory of Applied Bioorganic Chemistry, Division of Life Science, Graduate School of Agricultural Science, Tohoku University, J-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan
3Department of Entomology, University of California, Davis, CA 95616-8858, U.S.A.

Received June 20, 2000; Accepted July 21, 2000

All of the four possible stereoisomers of 5,9-dimethylpentadecane, the major sex pheromone component of the coffee leaf miner moth (*Perileucoptera coffeella*), were synthesized by using the methyl esters of (S)- and (R)-3-hydroxy-2-methylpropanoic acid as chiral sources for the purpose of determining the stereochemistry of the pheromone.

Key words: sex pheromone; *Perileucoptera coffeella*; 5,9-dimethylpentadecane

The coffee leaf miner moth, *Perileucoptera coffeella*, is an important pest of coffee trees in Brazil. The female-produced sex pheromone of this leaf miner moth has been revealed by Francke et al. to consist of 5,9-dimethylpentadecane (1) and 5,9-dimethylhexadecane as the major and minor components, respectively (Scheme).8 A synthetic stereoisomeric mixture of the major component (1) has recently been shown to be practically useful as an attractant for male *P. coffeella* from a field trapping test conducted on a coffee plantation in Brazil.9 As the next step, we planned the synthesis of all of the four stereoisomers of 1 in order to determine the stereochemistry of the natural pheromone by monitoring the behavior of the moth to each stereoisomer. In this note, we describe the synthesis of the stereoisomers of 1 by using the methyl esters of (S)- and (R)-3-hydroxy-2-methylpropanoic acid, (S)-2 and (R)-2, as the chiral sources.

Following the procedure reported by Mori et al.,4,5 commercially available (S)-2 was transformed into known alcohols (S)-3 and (S)-5, which were then converted into the corresponding iodides [(S)-4 and (S)-6, respectively] by treating with a mixture of iodine, triphenylphosphine and imidazole in tetrahydrofuran.9 The corresponding enantiomers of the iodides, (R)-4 and (R)-6, were also obtained analogously from (R)-2 via the respective alcoholic precursors, (R)-3 and (R)-5.4,5,9 The optical purity of each of these alcohols was determined to be virtually 100% e.e. from the 1H-NMR analyses of their corresponding MTPA esters (see the Experimental section). Alkylation of the butyllithium-generated carbocation of methyl phenyl sulfone with (S)-4 gave (S)-7 in a 66% yield. Resulting sulfone (S)-7 was then alkylated with (S)-6 to give (5S,9S)-8 in a 66% yield. Reductive removal of the sulfonyle moiety of (5S,9S)-8 was first carried out by using sodium amalgam in ethanol in the presence or absence of disodium hydrogen phosphate.5,9 Under both conditions, however, a small amount of olefinic product(s) was produced together with the desired product, (5S,9S)-1, probably due to the elimination of benzenesulfinic acid caused by in situ-generated sodium ethoxide, although the amount of the by-product(s) produced was smaller under the former conditions. The same side reaction was recently observed by Shirai et al. in their synthesis of the pheromone components of the spring hemlock looper and pitch pine looper.7 By changing the reduction conditions from sodium amalgam in ethanol to lithium in liquid ethylamine,9 however, we could suppress this side reaction and obtain the desired product, (5S,9S)-1, in an 80% yield without contamination from the olefinic by-product(s). The (5R,9S)-isomer of 1 was similarly synthesized by alkylating (S)-7 with (R)-6, this being followed by reduction of resulting sulfone (5R,9S)-8 with lithium in liquid ethylamine in a 49% yield from the two steps. The other stereoisomers, (5S,9R)-1

1 To whom correspondence should be addressed. Fax: +81-22-717-8783; E-mail: skuwahar@biochem.tohoku.ac.jp

Abbreviation: MTPA, α-methoxy-α-(trifluoromethyl)phenylacetyl
and (5R,9R)-1, were analogously derived from (R)-4 via sulfone (R)-7 in overall yields of 38% and 34%, respectively. The 1H- and 13C-NMR spectra of (5S,9R)-1 and (5R,9R)-1 were respectively identical with those of (5R,9S)-1 and (5S,9S)-1. On the other hand, small but discernible differences between (5R,9S)-1 and (5S,9S)-1 were apparent in their 13C-NMR spectra (see the experimental section).

In conclusion, we accomplished the synthesis of all of the four stereoisomers of 5,9-dimethylpentadecane, the major sex pheromone component of *P. coffeella*, from commercially available (S)- and (R)-3-hydroxy-2-methylpropanoic acid methyl esters. The pheromonal activity of each stereoisomer is now being estimated by Prof. Vilela of Universidade Federal de Vicosia in Brazil, and the results will be reported elsewhere.

Experimental

IR spectra were measured with a Jasco FT/IR-5000 spectrometer, and 1H-NMR spectra (500 MHz) were recorded with TMS as an internal standard in CDCl3 by a Jeol JNM-A500 spectrometer. Optical rotation values were recorded with a Jasco DIP 370 spectrometer, and Merck silica gel 60 Art 7734 was used for silica gel column chromatography.

Determination of the optical purities of (S)- and (R)-3, and of (S)- and (R)-5. Each of the alcohols, (S)- and (R)-3 (2 µl each), was treated overnight with (S)-MTPA chloride (6 µl) in pyridine (40 µl) at room temperature. Each reaction mixture was diluted with water, extracted with ether and finally concentrated in vacuo to give the corresponding (R)-MTPA ester, which was analyzed directly by 1H-NMR. The signals due to the C-1 protons of the MTPA ester derived from (S)-3 appeared at δ 4.07 (1H, dd, J = 11.0, 6.5 Hz) and δ 4.23 (1H, dd, J = 11.0, 5.5 Hz), while those derived from (R)-3 were observed at δ 4.14 (1H, dd, J = 11.0, 6.0 Hz) and δ 4.16 (1H, dd, J = 11.0, 6.5 Hz). Each spectrum, no signals due to the corresponding diastereomers were apparent, which enabled us to conclude that both (S)- and (R)-3 were optically pure. In a similar manner, (S)- and (R)-5 were converted into the corresponding (S)-MTPA esters by treating with (R)-MTPA chloride. The C-1 protons of the MTPA ester derived from (S)-5 resonated at δ 4.14 (1H, dd, J = 11.0, 6.0 Hz) and δ 4.16 (1H, dd, J = 11.0, 6.5 Hz), and those derived from (R)-5 appeared at δ 4.07 (1H, dd, J = 11.0, and 6.5 Hz) and δ 4.23 (1H, dd, J = 11.0, 5.5 Hz), without any signals due to the corresponding diastereomer being apparent in either spectrum. Therefore, both (S)- and (R)-5 were also determined to be optically pure.

(S)- and (R)-1-iodo-2-methyloctane, [(S)-4 and (R)-4], and (S)- and (R)-1-iodo-2-methylhexane, [(S)-6 and (R)-6]. To a stirred mixture of (S)-3 (3.00 g, 20.8 mmol), triphenylphosphine (6.54 g, 25.0 mmol) and imidazole (3.40 g, 44.9 mmol) in tetrahydrofuran (45 ml) was added portionwise iodine (6.33 g, 25.0 mmol) at room temperature. After 3 h, the reaction was quenched with 5% Na2S2O3 aq., and the resulting mixture was extracted with ether. The ethereal solution was successively washed with 5% Na2S2O3 aq., water and brine, dried (MgSO4) and concentrated in vacuo. The residue was distilled to give 4.71 g (89%) of (S)-4. The other iodides, (R)-4, (S)-6 and (R)-6, were similarly obtained in 83–90% yields. The optical rotation value of each iodide showed good agreement with that reported in the literature. (S)-4: bp 83–87°C (8 Torr); [α]20D +3.55° (c = 2.78, methanol), lit.5 [α]20D +3.42° (c = 3.10, methanol). (R)-4: bp 82–84°C (8 Torr); [α]20D −3.64° (c = 2.05, methanol), lit.7 [α]20D −2.77° (c = 2.36, hexane). (S)-6: bp 81–83°C (24 Torr); [α]20D +2.78° (c = 3.37, methanol), lit.4 [α]20D +2.80° (c = 3.76, methanol). (R)-6: bp 80–83°C (24 Torr); [α]20D −3.27° (c = 3.34, methanol), lit.5 [α]20D −3.23° (c = 3.53, methanol).

(S)-3-Methyl-1-(phenylsulfonyl)nonane [(S)-7]. To a stirred solution of methyl phenyl sulfone (3.97 g, 25.4 mmol) in THF-HMPA (10:1, 110 ml) was added dropwise a solution of butyllithium in hexane (1.5 M, 16.9 ml, 25.4 mmol) at −78°C. After 30 min, a solution of (S)-4 (4.61 g, 18.1 mmol) in THF (80 ml) was added, and the resulting mixture was allowed to warm gradually to room temperature over 10 h. The mixture was poured into sat. NH4Cl aq. and extracted with ether. The ethereal solution was successively washed with water and brine, dried (MgSO4) and
concentrated in vacuo. The residue was chromographed over silica gel (80 g, hexane-ether, 15:1) to give 3.37 g (66%) of silicon (5S,7R,9S)-8, [α]D20 +5.00° (c = 4.00, chloroform). IR νmax cm⁻¹: 3070 (s), 2960 (s), 2930 (s), 2860 (m), 1585 (w), 1460 (m), 1450 (m), 1405 (s), 1510 (s), 1090 (m), 790 (w), 745 (m). H-NMR δ (ppm): 8.30 (s, 1H, d, J = 6.4 Hz, 3-CH3), 0.87 (3H, t, J = 7.0 Hz, 9-CH3), 1.10–1.30 (10H, m), 1.42–1.51 (1H, m, 3-H), 1.49–1.57 (1H, m, 2-H), 1.69–1.76 (1H, m, 2-H), 3.05 (1H, ddd, J = 14.0, 11.0, 5.1 Hz, 1-H), 7.56–7.60 (2H, m, m-H2), 7.64–7.68 (1H, m, p-H), 7.90–7.93 (2H, o-H2). Anal. Found: C, 67.88; H, 9.29%. Calcd. for C₃₇H₅₂O₅S: C, 68.04; H, 9.28%.

(5S,7R,9S)-5,9-Dimethyl -7-(phenylsulfonyl)pentadecane [(5S,9S)-8]. To a stirred solution of (5S,7R,9S)-8 (1.57 g, 5.56 mmol) in THF-HMPA (15:2, 34 ml) was added dropwise a solution of butyllithium in hexane (1.5 m, 4.08 ml, 6.12 mmol) at –78°C. After 30 min, a solution of (S)-6 (1.38 g, 6.12 mmol) in THF (80 ml) was added, and the resulting mixture was allowed to warm gradually to room temperature over 10 h. The mixture was poured into sat. NH₄Cl aq. and extracted with ether. The ethereal solution was successively washed with water and brine, dried (MgSO₄) and concentrated in vacuo. The residue was chromatographed over silica gel (40 g, hexane-ether, 15:1) to give 1.43 g (66%) of (5S,9S)-8, [α]D20 +21.8° (c = 2.26, chloroform). IR νmax cm⁻¹: 3070 (w), 2960 (s), 2930 (s), 2860 (m), 1585 (w), 1460 (m), 1450 (m), 1380 (m), 1300 (s), 1150 (s), 1085 (m), 730 (s). H-NMR δ: 0.768 (0.5 × 3H, d, J = 6.5 Hz, 5-CH3 or 9-CH3), 0.771 (0.5 × 3H, d, J = 6.5 Hz, 5-CH3 or 9-CH3), 0.84–0.90 (9H, m, 1-H2, 15-H3, 5-H2 or 9-H2), 0.95–1.07 (1H, m), 1.09–1.32 (1H, m), 1.35–1.42 (1H, m), 1.42–1.48 (1H, m), 1.50–1.58 (1H, m), 1.61–1.67 (1H, m), 1.82–1.88 (1H, m), 3.03–3.08 (1H, m, 7-H), 7.54–7.58 (2H, m, m-H2), 7.63–7.66 (1H, m, p-H1), 7.87–7.89 (2H, m, o-H2). Anal. Found: C, 72.59; H, 10.60%. Calcd. for C₃₇H₅₂O₅S: C, 72.58; H, 10.59%.

(5S,9S)-5,9-Dimethylpentadecane [(5S,9S)-1]. To stirred liquid ethylamine (30 ml) were added small pieces of lithium (0.54 g, 78 mmol) at –15°C. After 30 min, a solution of (5S,9S)-8 (0.570 g, 1.44 mmol) in THF (5 ml) was added, and the mixture was stirred at –15°C for 2 h before being quenched with methanol. The mixture was stirred at room temperature for another 2 h to evaporate ethylamine, poured into sat. NH₄Cl aq. and extracted with ether. The ethereal solution was successively washed with water and brine, dried (MgSO₄) and concentrated in vacuo. The residue was chromatographed over silica gel (Katyama silica gel 60 K230 W, 20 g, hexane) to give 0.28 g (80%) of (5S,9S)-1, [α]D20 +6.23° (c = 1.30, chloroform). IR νmax cm⁻¹: 2960 (s), 2930 (s), 2860 (s), 1465 (m), 1380 (m), 1055 (w), 970 (w), 725 (w).

'H-NMR δ: 0.840 (3H, d, J = 6.6 Hz, 5-CH3 or 9-CH3), 0.842 (3H, d, J = 6.6 Hz, 5-CH3 or 9-CH3), 0.88 (3H, t, J = 7.0 Hz, 1-H2 or 15-H2), 0.89 (3H, t, J = 7.0 Hz, 1-H2 or 15-H2), 1.03–1.12 (4H, m), 1.20–1.32 (22H, m), 1.32–1.40 (2H, m, 5-H, 9-H).

'13C-NMR δ: 14.03, 14.07, 19.70, 22.63, 22.98, 24.41, 27.00, 29.29, 29.63, 31.90, 32.68, 32.71, 36.79, 37.11, 37.34 (only 15 peaks were observed due to two overlapping peaks). Anal. Found: C, 84.89; H, 14.95%. Calcd. for C₃₇H₅₂O₅S: C, 84.91; H, 15.09%.

(5R,7R,9S)-5,9-Dimethyl -7-(phenylsulfonyl)pentadecane [(5R,9S)-8]. In the same manner as that described for the preparation of (5S,9S)-8, coupling of (5S,7R,9S)-1, reduction of (5R,9S)-8 (1.33 g, 3.37 mmol) afforded 0.660 g (82%) of (5R,9S)-1, [α]D20 –0.96° (c = 4.18, chloroform). IR νmax cm⁻¹: 2960 (s), 2930 (s), 2860 (w), 1465 (m), 1380 (m), 1055 (w), 970 (w), 725 (w). H-NMR δ: 0.840 (3H, d, J = 6.6 Hz, 5-CH3 or 9-CH3), 0.842 (3H, d, J = 6.6 Hz, 5-CH3 or 9-CH3), 0.88 (3H, t, J = 7.0 Hz, 1-H2 or 15-H2), 0.89 (3H, t, J = 7.0 Hz, 1-H2 or 15-H2), 1.03–1.12 (4H, m), 1.20–1.32 (22H, m), 1.32–1.40 (2H, m, 5-H, 9-H).

'13C-NMR δ: 14.03, 14.07, 19.70, 22.63, 22.98, 24.41, 26.49, 29.29, 29.63, 31.90, 32.68, 32.71, 36.69, 37.02, 37.39 (only 15 peaks were observed due to two overlapping peaks). Anal. Found: C, 85.17; H, 15.12%. Calcd. for C₃₇H₅₂O₅S: C, 84.91; H, 15.09%.

(5R,7R,9S)-5,9-Dimethylpentadecane [(5R,9S)-1]. In the same manner as that described for the preparation of (5S,9S)-1, alkylation of methyl phenyl sulfone (5.5 g, 34.8 mmol) with (5R,4)-4 (5.90 g, 23.2 mmol) afforded 4.33 g (66%) of (5R,7R,9S)-8, [α]D20 –5.24° (c = 4.21, chloroform). The IR and 'H-NMR spectra were identical with those of (5S)-7. Anal. Found: C, 67.78; H, 9.04%. Calcd. for C₃₇H₅₂O₅S: C, 68.04; H, 9.28%.
(5S,7RS,9R)-5,9-Dimethyl-7-(phenylsulfonyl)pentadecane [(5S,9R)-8]. In the same manner as that described for the preparation of (5S,9S)-8, coupling (R)-7 (1.52 g, 5.50 mmol) with (S)-6 (1.38 g, 6.02 mmol) afforded 1.39 g (64%) of (5S,9R)-8, [a]D

+ 19.4° (c = 2.45, chloroform). The IR and 1H-NMR spectra were identical with those of (5R,9S)-8. Anal. Found: C, 72.57; H, 10.50%. Calcd. for C_{22}H_{36}O_{2}: C, 72.58; H, 10.59%.

(5S,9R)-5,9-Dimethylpentadecane [(5S,9R)-1]. In the same manner as that described for the preparation of (5S,9S)-1, reduction of (5S,9R)-8 (0.81 g, 2.05 mmol) afforded 0.44 g (89%) of (5S,9R)-1, [a]D

+ 1.14° (c = 3.81, chloroform). The IR, 1H- and 13C-NMR spectra were identical with those of (5R,9S)-1. Anal. Found: C, 84.82; H, 15.08%. Calcd. for C_{22}H_{36}: C, 84.91; H, 15.09%.

(5R,7RS,9R)-5,9-Dimethyl-7-(phenylsulfonyl)pentadecane [(5R,9R)-8]. In the same manner as that described for the preparation of (5S,9S)-8, coupling (R)-7 (1.46 g, 5.28 mmol) with (R)-6 (1.31 g, 5.81 mmol) afforded 1.17 g (56%) of (5R,9R)-8, [a]D

−19.4° (c = 2.45, chloroform). The IR and 1H-NMR spectra were identical with those of (5S,9S)-8. Anal. Found: C, 72.58; H, 10.61%. Calcd. for C_{22}H_{36}O_{2}: C, 72.58; H, 10.59%.

(5R,9R)-5,9-Dimethylpentadecane [(5R,9R)-1]. In the same manner as that described for the preparation of (5S,9S)-1, reduction of (5R,9R)-8 (1.17 g, 2.96 mmol) afforded 0.66 g (92%) of (5R,9R)-1, [a]D

−6.43° (c = 1.48, chloroform). The IR, 1H- and 13C-NMR spectra were identical with those of (5S,9S)-1. Anal. Found: C, 84.91; H, 15.02%. Calcd. for C_{22}H_{36}: C, 84.91; H, 15.09%.

Acknowledgments

This work was supported, in part, by grant-aid for scientific research (C) from the Ministry of Educa-

References

3) Vilela, E. F., and Lima, E. R., personal communication to S. K.

