Cloned Cytosine Deaminase Gene Expression of *Bifidobacterium longum* and Application to Enzyme/Pro-drug Therapy of Hypoxic Solid Tumors

Toshiyuki Nakamura,†† Takayuki Sasaki,†† Minoru Fujimori,† Kazuyuki Yazawa,† Yasunobu Kano,‡ Jun Amano,† and Shun‘ichiro Taniguchi³

†Department of Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan
‡Department of Molecular Genetics, Institute of Molecular and Cellular Biology for Pharmaceutical Sciences, Kyoto Pharmaceutical University, 1 Shichono-cho, Misasagi, Yamashina-ku, Kyoto 607-8412, Japan
³Department of Molecular Oncology and Angiology, Angio-Aging Research Division, Research Center on Aging and Adaptation, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan

Received May 7, 2002; Accepted June 27, 2002

Bifidobacterium longum is a nonpathogenic anaerobic bacterium among normal bacterial flora. Recently, it was reported that *B. longum* accumulated in hypoxic solid tumors. The gene of interest was expressed in transfected *B. longum* by the shuttle vector pBLES100 in solid tumors. In this report, we constructed pBLES100-S-eCD, which included the cytosine deaminase gene. We confirmed by western blotting that transfected *B. longum* produced cytosine deaminase. In addition, transfected *B. longum* produced cytosine deaminase that converted 5-fluorocytosine into 5-fluorouracil. *B. longum* could be useful for enzyme/pro-drug therapy of hypoxic solid tumors.

Key words: *Bifidobacterium longum*; cytosine deaminase; enzyme/pro-drug therapy; pBLES100-S-eCD

The fundamental obstacle to producing gene therapies for cancer is that no vector exists that can carry a particular gene to a corresponding cancer-specific site. In human solid tumors, the oxygen partial pressure is lower than in normal tissue. Certain species of anaerobic bacteria, including *Clostridium* and *Bifidobacterium*, can selectively germinate and grow in the hypoxic regions of solid tumors after intravenous injection. *Bifidobacterium longum* is one of nonpathogenic anaerobic bacterium among normal bacterial flora and it is found in the lower small intestine and large intestine.

Enzyme/pro-drug therapies for cancer convert nonpathogenic precursors into material with antitumor properties generated by an enzyme in the tumor. If the optional gene could be expressed in *B. longum*, it would be possible to use this species for enzyme/pro-drug therapy. Recently, an *Escherichia coli*-B. *longum* shuttle vector, pBLES100, was constructed. Yazawa *et al.* reported that *B. longum* transfected by this shuttle vector expressed the antibiotic resistance gene via a plasmid into solid tumors. We have also observed that the HU gene, which encodes a histone-like protein, was expressed by *B. longum* at high rates. We constructed a plasmid (pBLES100-S-eCD), which included the HU gene promoter and the gene encoding the cytosine deaminase of *E. coli* in the pBLES100 vector; the cytosine deaminase enzyme converts 5-fluorocytosine (5-FC) to 5-fluorouracil (5-FU). To find whether or not transfected *B. longum* produced active cytosine deaminase, we measured the 5-FU concentration in vitro.

Materials and Methods

Bacteria. *B. longum* 105-A, obtained from Mitsuoka, was anaerobically cultured at 37°C to middle log phase in a slightly modified Briggs broth using 2% lactose instead of glucose.

Plasmid construction. The plasmid was constructed as follows (Fig. 1). (1) The gene encoding the cytosine deaminase of *E. coli* (cCD) was amplified from pAdex1CACD (RIKEN; Institute of Physical and Chemical Research), Gene Bank, RDB No. 1591) including the CD gene of *E. coli*. PCR was done using the following primers: sense primer 5'-GGTTCGAATAACGCTTTA-3' and antisense primer 5'-CGAGTTAACCAGTTTGAATC-3'. The sense primer includes an *NspV* site and the antisense primer includes an *HpaI* site. PCR was done with 125 ng of pAdex1CACD in a 40-μl reaction, 2 units of *Pfu Turbo* DNA polymerase, and reaction kits.

Abbreviations: CD, cytosine deaminase; eCD, cytosine deaminase of *Escherichia coli*; cfu, colony-forming units

† To whom correspondence should be addressed. Fax: +81-263-37-2721; E-mail: minoru1@hsp.md.shinshu-u.ac.jp
†† Contributed equally

Fig. 1. Construction of pBLES100-S-eCD.

(A) The amplified CD gene was cloned in pCR-BluntII-TOPO, giving pCR-BluntII-TOPO-eCD. (B) pCR-BluntII-TOPO-eCD was digested with HpaI/NspV. The fragment containing the CD gene was fused with pBLHU15, giving pBLHU15-eCD. (C) pBLHU15-eCD was digested with HindIII, and the HindIII-HindIII fragment was fused with pBLES100, producing pBLES100-S-eCD. (Ori, origin; Km', kanamycin resistant; Amp', ampicillin resistant; Tet', tetracycline resistant; Sp', spectinomycin resistant).

Polymerase chain reaction. PCR was done using 10 ng of pBLES100-S-eCD or pBLES100 in a 25-μl reaction, 0.5 units of AmpliTaq DNA polymerase, and reaction kits (Perkin Elmer/Cetus, Wellesley, MA), according to the manufacturer's instructions. The PCR profile was as follows: 94°C for 5 min followed by 30 cycles (each cycle: 94°C for 30 s, 55°C for 30 s, 72°C for 30 s) and a final extension at 72°C for 1 min. The following primers were used for the amplification of the CD gene specific sequence: sense primer 5'-GGTTCGAATAACGCTTTA-3' and antisense primer 5'-CGGTTAACTCAACGTTTGAATC-3'.

Transformation of pBLES100-S-eCD. The pBLES100-S-eCD was transferred directly into B. longum 105-A by electroporation with a Gene Pulser apparatus (Bio-Rad Laboratories, Hercules, CA; inter-electrode distance, 0.2 cm). Electroporation was done at 2.0 kV and a 25-μF capacitor setting with the pulse controller set at 200 Ω parallel resistance, yielding a pulse duration of 4.1–4.5 ms. Stable transformants were obtained with an efficiency of 1.6 × 104 transformants/μg DNA under optimum conditions. Transfected B. longum was grown under anaerobic conditions at 37°C in Briggs broth containing 75 μg/ml spectinomycin.

Protein extract and western blotting. The B. longum culture solution was centrifuged (3,000 × g for
Amplification of the 1300-bp DNA fragment of the CD gene (lane 1, 100-bp DNA ladder; lane 2, pBLES100-S-eCD; lane 3, pBLES100; lane 4, negative control).

Western blotting
To confirm whether or not the transfected \textit{B. longum} produced CD, proteins extracted from wild-type \textit{B. longum} and transfected \textit{B. longum} were analyzed by western blotting. The molecular mass of recombinant CD was 47.5 kDa, and the transfected \textit{B. longum} had the same molecular mass in all lanes. In contrast, wild-type \textit{B. longum} did not have a band of 47.5 kDa (Fig. 3). Moreover, the finding suggests that the CD gene was expressed and that CD was produced.

Measurement of the 5-FU concentration. The 5-FU concentration of the supernatant of the sample was measured by HPLC (Toch, Tokyo) (pump: CCPD, autosampler: AS-8000, detector: UV8010, column heater: U-620 Type 30, degasser: SD8012, data processor: Labchart 180, column: Tsk-gel ODS-80Ts).

Statistical analysis. The statistical significance of differences was evaluated by Student’s \(t \)-test with Statview 5.0 software (SAS Institute Inc., Cary, NC).

Results
Polymerase Chain Reaction
The 1300-bp DNA fragment of the CD gene was amplified using pBLES100-S-eCD as the template (Fig. 2). These results confirmed that the CD gene was cloned in the plasmid pBLES100-S-eCD.

Western blotting
To confirm whether or not the transfected \textit{B. longum} produced CD, proteins extracted from wild-type \textit{B. longum} and transfected \textit{B. longum} were analyzed by western blotting. The molecular mass of recombinant CD was 47.5 kDa, and the transfected \textit{B. longum} had the same molecular mass in all lanes. In contrast, wild-type \textit{B. longum} did not have a band of 47.5 kDa (Fig. 3). Moreover, the finding suggests that the CD gene was expressed and that CD was produced.

Conversion of 5-FC into 5-FU time-dependently
Twenty-five milligrams of 5-FC was added to both culture solutions of wild-type and transfected \textit{B. lon-
Conversion of 5-FC into 5-FU in Wild-type and Transfected B. longum.

The number of B. longum cells was adjusted to 1.0×10^3, 10^4, 10^5, 10^6, and 10^7 cfu/ml. 5-FC was added to the culture medium. With transfected B. longum (●), the 5-FU concentration was higher with more cells, after a certain point. With wild-type B. longum (△), 5-FU was not detected, whatever the cell density.

Conversion of 5-FC into 5-FU and the density of bacilli

Twenty-five milligrams of 5-FC was added to both wild-type and transfected B. longum culture solutions. The total amount of culture solution was 6 ml, and the final 5-FC concentration was 6.25 mg/ml. The number of B. longum was adjusted at each concentration: 1.0×10^3, 1.0×10^4, 1.0×10^5, 1.0×10^6, 1.0×10^7, and 1.0×10^8 cfu/ml. After 5 h, the concentration of 5-FU in each culture solution was measured by HPLC. The observed 5-FU concentrations rose with increases in the number of the bacilli. In wild-type B. longum, 5-FU was hardly detected, even when the number of bacilli increased (Fig. 4). The concentration of 5-FU increased in proportion to the number of B. longum.

Discussion

In this study, we confirmed that B. longum transfected by pBLES100-S-eCD was able to produce CD. The CD was able to convert 5-FC into 5-FU in vitro, and therefore had enzymatic activity. In addition, the 5-FU concentration increased in proportion to the number of bacilli and the amount of time that had passed.

The treatment of solid tumors by systemic administration of 5-FU has some disadvantages. First, it is necessary to administer large doses of 5-FU to the whole body to distribute a sufficiently dense concentration of 5-FU to the tumor. Second, various side effects accompany massive doses of 5-FU. Five-fluorocytosine is a pro-drug with lower toxicity than that of 5-FU, and therefore it is possible to administer larger doses of 5-FC. If CD, which converts 5-FC into 5-FU, exists only in the tumor, it might be possible to obtain high-density administration of 5-FU without simultaneously distributing 5-FU among normal tissues. We refer to this manner of administration as enzyme/pro-drug therapy.

Some bacterial vectors for cancer gene therapy have been reported. In such cases, bacteria proliferate between tumor cells, and thus the therapeutic gene is not introduced into the tumor cell, but rather the therapeutic protein is produced in the tumor. This mechanism differentiates enzyme/pro-drug therapy from what is called gene therapy, which uses virus and liposome vectors. Candidate bacterial vectors for gene introduction include species of Bifidobacterium, Clostridium, and Salmonella. 3–6,14)

Engineered Clostridium acetobutylicum has been reported as particularly useful for enzyme/pro-drug therapy. 15) However, Clostridium and Salmonella are pathogenic, and exothermic reactions related to oral administration have been reported. 16,17) In contrast, Bifidobacterium is part of the normal bacterial flora in the intestine, and more importantly, it is non-pathogenic. In addition, Bifidobacterium has been reported to suppress carcinogenesis 18) and it also can defend the host against viral infection. 19) Yazawa et al. reported that B. longum accumulated after systemic administration, and that the gene on the plasmid was expressed in the tumor. 8,9) Therefore, it appears that B. longum, transfected by pBLES100-S-eCD, proliferates in a tumor-specific manner. Furthermore, if a sufficient number of B. longum cells are present in a tumor, then 5-FC is converted into 5-FU during tumor division after systemic administration of 5-FC, and antitumor effects are expected from such treatments.

These findings suggest that B. longum is an excellent gene delivery system and candidate for enzyme/pro-drug therapy. B. longum promises to be useful for the treatment of hypoxic solid tumors.

Acknowledgment

We thank Dr. Hirofumi Hamada (Sapporo Medical University) for kindly providing pAdex1CACD, and Dr. Peter S. White for reviewing the manuscript.
References