J-STAGE Home  >  Publications - Top  > Bibliographic Information

Bioscience, Biotechnology, and Biochemistry
Vol. 66 (2002) No. 2 P 378-384

Language:

http://doi.org/10.1271/bbb.66.378

Food & Nutrition Science Regular Papers

  Some of the food-derived tripeptides with angiotensin converting enzyme (ACE)-inhibitory activity have been reported to be hypotensive after being orally administered. The mechanism for the intestinal transport of these tripeptides was studied by using monolayer- cultured human intestinal Caco-2 cells which express many enterocyte-like functions including the peptide transporter(PepT1)-mediated transport system. Val-Pro-Pro, an ACE-inhibitory peptide from fermented milk, was used as a model tripeptide. A significant amount of intact Val-Pro-Pro was transported across the Caco-2 cell monolayer. This transport was hardly inhibited by a competitive substrate for PepT1. Since no intact Val-Pro-Pro was detected in the cells, Val-Pro-Pro apically taken by Caco-2 cells via PepT1 was likely to have been quickly hydrolyzed by intracellular peptidases, producing free Val and Pro. These findings suggest that PepT1-mediated transport was not involved in the transepithelial transport of intact Val-Pro-Pro. Paracellular diffusion is suggested to have been the main mechanism for the transport of intact Val-Pro-Pro across the Caco-2 cell monolayer.

Copyright © 2002 by Japan Society for Bioscience, Biotechnology, and Agrochemistry

Article Tools

Share this Article