Bioscience, Biotechnology, and Biochemistry
Online ISSN : 1347-6947
Print ISSN : 0916-8451
Organic Chemistry Regular Papers
Spectrophotometric and Kinetic Studies on the Binding of the Bioflavonoid Quercetin to Bovine Serum Albumin
Trevor M. KITSON
Author information
JOURNAL FREE ACCESS

2004 Volume 68 Issue 10 Pages 2165-2170

Details
Abstract

This work investigates the binding of the bioflavonoid, quercetin, to bovine serum albumin (BSA) by spectrophotometric techniques involving both the conventional and stopped-flow methods. Both the neutral and negatively-charged forms of quercetin bound to BSA with a red shift in the maximal absorption. At high pH values, quercetin was rapidly degraded in an oxygen-dependent process, but this decomposition was substantially slower when the flavonoid was bound to BSA. At pH 7.4, the difference spectrum of quercetin with and without BSA was maximal at 425 nm; this wavelength can be conveniently used to monitor the extent and speed of binding. Spectrophotometric studies with a range of equimolar mixtures of quercetin and BSA at pH 7.4 suggest the binding was maximal when the concentration was 10 μM. It is postulated that the binding site of BSA for quercetin was less available at higher protein concentrations, perhaps because of conformational change or self-association. The rate of spectrophotometric change when quercetin bound to BSA was fairly slow; the process was not quite complete within 45 seconds and was biphasic. When a pre-mixed equimolar mixture of BSA and quercetin was diluted with an equal volume of the buffer, there was a surprising further increase in absorbance at 425 nm (rather than the fall anticipated if the binary complex were to dissociate). It is concluded that, upon dilution, the effective concentration of BSA’s binding site increased, providing more scope for quercetin to bind.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2004 by Japan Society for Bioscience, Biotechnology, and Agrochemistry
Previous article Next article
feedback
Top