A major collagenase was purified about 96-fold from a crude enzyme sample of *Streptomyces parvulus* by chromatography on Q-Sepharose, Sephacryl S-200, and butyl-Toyopearl. The purified enzyme showed a relative molecular mass of approximately 52,000 on SDS–PAGE and a pH optimum at about 9.0, and was strongly inhibited by metal-chelating agents. It also cleaved 4-phenylazobenzyloxycarbonyl-Pro-Leu-Gly-Pro-D-Arg specifically at the Leu-Gly bond, with a *Km* value of 0.60 mM at pH 9.0 at 37°C. Based on the amino acid sequences of the N-terminal region and internal tryptic peptides, the corresponding gene was cloned. The DNA sequence of the cloned gene indicated that the enzyme is produced as an 864-residue precursor protein with a 408-residue prepro sequence followed by a 456-residue mature enzyme moiety. The enzyme is most homologous with the collagenase from *S. coelicolor*, the identity being 73%, and it is thought to be a member of the *Vibrio* collagenase subfamily.

Key words: amino acid sequence; characterization; collagenase; purification; *Streptomyces parvulus*

Bacterial collagenases (*IUBMB* EC 3.4.24.3) are metallo-endopeptidases capable of digesting native, triple-helical collagens, and are classified into two major subfamilies, M9A including *Vibrio* collagenases and M9B including *Clostridium* collagenases in the MEROPS classification. They are useful in tissue dissociation experiments, including the isolation of hepatocytes, adipocytes, and other cells for research, including the isolation of pancreatic islets, and vascular prostheses and the isolation of pancreatic islets. They are useful in tissue dissociation experiments, including the isolation of hepatocytes, adipocytes, and other cells for research, including the isolation of pancreatic islets, and vascular prostheses and the isolation of pancreatic islets.

Materials and Methods

Materials. A bacterial strain of *S. parvulus* subsp. *citrinus* (IFO 14435) was obtained from the Fermentation Institute (Tsukuba, Japan). A crude enzyme sample (collagenase N-2) prepared from the same bacterial strain was from Nitta Zeratin, Osaka, Japan. It had been prepared from a culture filtrate of the above bacteria by ammonium sulfate fractionation, followed by chromatographies on DEAE-Toyopearl and Sephadex G-100. Azocasein, benzamidine, bovine pancreatic trypsin inhibitor, diisopropylfluorophosphatase, and N,N'-toxoyl-phenylalanine chloromethyl ketone were from Sigma (St. Louis, MO), and bestatin and leupeptin from Peptide Institute (Osaka, Japan). 4-Phenylazobenzyloxycarbonyl (PZ)-Pro-Leu-Gly-Pro-D-Arg-OH (PZ-peptide) was from Nova Biochem (Laufingen, Switzerland). Q-Sepharose and Sephacryl S-200 were from Pharmacia Biotech (Piscataway, NJ), and butyl-Toyopearl and a TSKgel ODS-120T column were from Tosoh Co. (Tokyo). Reagents for protein and peptide sequencing were from Applied Biosystems (Tokyo). Other reagents were of analytical grade, largely obtained from Wako Pure Chemical (Tokyo).

Determination of enzyme activity. Azocoll was routinely used as a substrate unless otherwise specified, essentially as described elsewhere. Azocoll (4 mg) suspended in 890 μl of 50 mM Tris–HCl buffer, pH 7.5, was mixed with 10 μl of an enzyme solution in the same buffer, and the mixture was kept at 37°C for 10–30 min under shaking. The reaction was stopped by the addition of 100 μl of 30% trichloroacetic acid, and the mixture was centrifuged at 40,000 × g for 10 min. The absorbance of the supernatant was measured at 540 nm. The blank sample was treated in the same manner without the enzyme. One unit

The nucleotide sequence data for the collagenase are available from the DDBJ data bank under accession no. AB429498.

To whom correspondence should be addressed. Fax: +81-49-297-8168; E-mail: kenjitak@ls.toyaku.ac.jp

Abbreviations: PZ, 4-phenylazobenzyloxycarbonyl; PCR, polymerase chain reaction
of enzyme activity was defined as the amount causing an increase of 1.0 in the absorbance at 540 nm per min under the standard assay conditions. When the volume of enzyme solution exceeded 10 μl, the volume of the buffer used to suspend azocoll was reduced accordingly to adjust the final volume of the assay mixture to 900 μl.

Purification procedures. All purification steps were performed at 4°C. A crude enzyme sample (collagenase N-2) (50 mg) was dissolved in 5 ml of 5 mM Tris–HCl buffer, pH 8.0, and 4 mM CaCl₂, and dialyzed against the same buffer (4,000 ml × 2). The dialyzed sample was loaded on a column of Q-Sepharose (2.1 × 19.5 cm) of Sephacryl S-200 equilibrated and eluted with 50 mM Tris–HCl buffer, pH 8.0, and 4 mM CaCl₂. The active fractions were pooled and concentrated using Centricell (Polysciences, Warrington, PA), and applied to a column (3.0 × 100 cm) of Sephacryl S-200 equilibrated and eluted with 50 mM Tris–HCl buffer, pH 8.0, 4 mM CaCl₂, and 0.2 M NaCl. The pooled active fraction was concentrated using Centricell and applied to a column of butyl-Toyopearl equilibrated with 50 mM Tris–HCl buffer, pH 8.0, 4 mM CaCl₂, and 20% ammonium sulfate. Elution was performed by a linear gradient from 50 mM Tris–HCl buffer, pH 8.0, 4 mM CaCl₂, and 10% ammonium sulfate (1,000 ml) to 5 mM Tris–HCl buffer, pH 8.0, and 4 mM CaCl₂ (1,000 ml). The active fractions were pooled and stored frozen at −20°C. When necessary, part of the pooled fraction was concentrated using Centricell, desalted through a PD-10 column, and stored frozen at −80°C.

SDS−PAGE. To check the homogeneity of the purified enzyme and to estimate its molecular mass, SDS−PAGE was performed under non-reducing conditions in 10% polyacrylamide gel by the method of Laemmli, followed by Coomassie Brilliant Blue staining.

Determination of pH/activity profile. The activity toward azocoll was determined at 37°C at pH 4.0−6.0 in 50 mM sodium acetate buffers, at pH 7.0−9.0 in 50 mM Tris–HCl buffers, at pH 9.5−11.0 in 0.1 M Na₂CO₃−NaHCO₃ buffers, and at pH 11.5−12.0 in 0.1 M Na₂CO₃−NaOH buffers. The experiments were performed 4 times.

Inhibition studies. The enzyme (0.008 μg in 10 μl of 7.5 mM Tris–HCl buffer, pH 8.0, and 4 mM CaCl₂) was mixed with the various reagents dissolved in 2−20 μl of 50 mM Tris–HCl buffer, pH 9.0 (containing a small volume of ethanol where necessary), and kept at 37°C for 5 min, and then the remaining activity toward azocoll was determined under standard assay conditions.

Stability studies. The enzyme (0.12 μg in 150 μl of 7.5 mM Tris–HCl buffer, pH 8.0, and 4 mM CaCl₂) was kept at different temperatures for 30 min or 1 h, and then the remaining activity toward azocoll was determined under standard assay conditions. The experiments were performed 4 times.

Kinetic studies. The reaction mixtures contained various volumes of PZ-peptide solution (0.34 nmol/μl in 50 mM Tris–HCl buffer, pH 9.0), enzyme solution (5 μl, 0.004 μg), 50 mM Tris–HCl buffer, pH 9.0 (80 μl), and distilled water in a total volume of 190 μl. The mixtures were incubated at 37°C for 5 min unless otherwise specified. The reaction was stopped by heating at 100°C for 2 min, and the digest was analyzed by HPLC using a Hitachi (Tokyo) 655A-11 system on a column (0.46 × 25 cm) of TSKgel ODS-120T (Tosoh, Tokyo). The peptides were eluted with linear gradients of acetonitrile (0−40% over 30 min or 1 h, and then the remaining activity toward azocoll was determined under standard assay conditions. The experiments were performed 4 times.

Cloning and nucleotide sequencing of the collagenase gene. Cloning of the collagenase gene was performed as described essentially as previously. Based on the amino acid sequences Leu-Arg-Ile-Arg-Ala-Glu-Glu-Met-Thr, Val-Leu-Ile-Asn-His-Thr-Cys, and Phe-Gly-Gly-Gly-Thr-Thr-Ser-Ala-Ala-Ala-Pro-Ala, the degenerated primers were designed as follows: Fwd-1, CTT (A/G) GTT (A/G) GG C(A/G)/(A/G) GG GA(A/G) ATG AC; Fwd-2, GTI CTI GTG (G/C) ATC AAC(T)/T CAC(T)/C ACG(C/G)/A T; and Rev, GC IGG (G/A) TT IGC IGG IC (G/C/A/T)/T IGT IGG (G/A) ICC (G/A) AA. The first polymerase chain reaction (PCR) was performed using a DNA extract from S. parvulus as the template and a set of primers, Fwd-2 and Rev. The PCR conditions were as follows: an initial denaturation of 94°C for 5 min; 25 cycles of 94°C for 30 s, 55°C for 2 min, and 72°C for 2 min; and a final extension of 72°C for 7 min. The PCR products were cleaved using a DNA sequencer model 477A (LI-COR).

Sequence comparison. Sequence alignment and the construction of a phylogenetic tree were performed using the program Clustal W.

Prediction of the signal sequence cleavage site, secondary structures, and the hydrophobicity profile. The signal sequence cleavage site was predicted following Heinemann. Secondary structures were predicted by the GOR4 program and following Chou and Fasman. A hydrophobicity plot was obtained by the method of Kyte and Doolittle.

Results and Discussion. A major collagenase was purified from the crude enzyme sample (collagenase N-2) from S. parvulus by successive steps of chromatography on Q-Sepharose, Sephacryl S200, and butyl-Toyopearl. The results are shown in Fig. 1 and Table 1. The enzyme activity was largely eluted from the Q-Sepharose column with the equilibration buffer at the flow-through position, and most of the non-enzyme protein was bound to the
column and eluted by the gradient elution (data not shown). The enzyme in the flow-through fraction from Q-Sepharose was further purified by chromatography on Sepharose S-200 and butyl-Toyopearl. The total activity was somewhat increased after butyl-Toyopearl chromatography (Table 1), presumably due to the removal of an inhibitory contaminant. Through these steps, the enzyme was purified from the crude sample about 96-fold at a yield of 55%. The purified enzyme gave a single peak on SDS–PAGE, and its relative molecular mass was estimated to be approximately 52,000 (Fig. 2). Upon chromatography on Sepharose S-200 and butyl-Toyopearl, a minor activity peak was observed in front of the major peak. These results might indicate the presence of a minor collagenase component (see Fig. 10). The possibility cannot be excluded that a small amount of the minor enzyme contaminated the purified enzyme fraction. However, since no additional band was observed on SDS–PAGE, the amount might have been extremely small or its molecular mass might have been indistinguishable from that of the major enzyme.

Table 1. Purification of a Collagenase from *S. parvulus*

<table>
<thead>
<tr>
<th>Step</th>
<th>Protein (mg)</th>
<th>Total activity (units)</th>
<th>Specific activity (units/mg)</th>
<th>Purification (-fold)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude enzyme</td>
<td>50</td>
<td>488</td>
<td>9.8</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>Q-Sepharose</td>
<td>3.6</td>
<td>349</td>
<td>97</td>
<td>9.9</td>
<td>72</td>
</tr>
<tr>
<td>Sephacryl S-200</td>
<td>2.1</td>
<td>221</td>
<td>105</td>
<td>10.7</td>
<td>45</td>
</tr>
<tr>
<td>Butyl-Toyopearl</td>
<td>0.29b</td>
<td>270</td>
<td>938</td>
<td>95.7</td>
<td>55</td>
</tr>
</tbody>
</table>

A crude enzyme sample (collagenase N-2) (50 mg) was used as the starting material.

The protein was estimated assuming A_{280} (0.1%, 1 cm) = 1.0, except for the crude enzyme.

This value was corrected to 0.12 mg using a calculated A_{280} (0.1%, 1 cm) = 2.363.

of the major peak. These results might indicate the presence of a minor collagenase component (see Fig. 10). The possibility cannot be excluded that a small amount of the minor enzyme contaminated the purified enzyme fraction. However, since no additional band was observed on SDS–PAGE, the amount might have been extremely small or its molecular mass might have been indistinguishable from that of the major enzyme.

The purified major enzyme was used in the subsequent characterization studies. To date, collagenases from *Streptomyces* species have been purified from various sources, but have been characterized only partially.\(^{12-16}\) Figure 2 shows the pH-dependence of the activity toward azocoll; the enzyme is highly active in a pH range of 8–10, with a maximum around pH 9. This pH optimum is similar to that of 8–9 reported for *Streptomyces* sp.\(^{14}\) but higher than the pH optima in a range of 6.0–8.0, reported for collagenases from *Streptomyces* sp.\(^{138215}\) and 3B\(^{16}\) and other collagenases.\(^{4,9,10,18}\) As shown in Fig. 4, the enzyme was fairly stable up to 50°C. Above 50°C, it became remarkably unstable, and it was almost completely inactivated by incubation at 60°C for 30 min (Fig. 4). The results obtained by incubation for 1 h were nearly the same, except that 45% of the original activity was lost at 55°C.

![Fig. 1. Purification of a Collagenase from *S. parvulus*.](image1)

Fig. 1. Purification of a Collagenase from *S. parvulus*.

a. Chromatography on a Sepharose S-200 column. The active fraction, which had passed through the Q-Sepharose column, was chromatographed on the column (3.0 x 100 cm) equilibrated and eluted with 50 mM Tris–HCl buffer, pH 8.0, 4 mM CaCl\(_2\), and 0.2 M NaCl at a flow rate of 28 ml/h. Fractions of 8.3 ml were collected, and the active fractions under the bar were pooled. b. Chromatography on a butyl-Toyopearl column. The active fraction from the Sepharose S-200 column was applied to a butyl-Toyopearl column (2.1 x 19.5 cm) equilibrated with 50 mM Tris–HCl buffer, pH 8.0, 4 mM CaCl\(_2\), and 20% ammonium sulfate. Elution was performed by a linear gradient from 50 mM Tris–HCl buffer, pH 8.0, 4 mM CaCl\(_2\), and 10% ammonium sulfate (1,000 ml) to 5 mM Tris–HCl buffer, pH 8.0, and 4 mM CaCl\(_2\) (1,000 ml) at a flow rate of 50 ml/h. Fractions of 10 ml were collected, and the active fractions under the bar were pooled. The broken line in (b) shows the concentration of ammonium sulfate (AS) in the eluting buffer.

![Fig. 2. SDS–PAGE of Purified *S. parvulus* Collagenase.](image2)

The *S. parvulus* collagenase finally purified by chromatography on butyl-Toyopearl was submitted to SDS–PAGE. Electrophoresis was performed under non-reducing conditions in a 10% gel, followed by Coomassie Brilliant Blue staining. M, molecular mass markers; S, sample.

![Fig. 3. pH-Dependence of Activity of *S. parvulus* Collagenase toward Azocoll.](image3)

Activity toward azocoll was measured at various pH values at 37°C. ▲, sodium acetate buffers; ●, Tris–HCl buffers; ▼, Na\(_2\)CO\(_3\)–NaHCO\(_3\) buffers; ▼, Na\(_2\)CO\(_3\)–NaOH buffers. Each point represents an average of the values obtained in four independent experiments. The vertical bars represent standard deviations.
The enzyme was kept at various temperatures for 30 min (——) or 1 h (—–—–) at pH 8.0, and then the remaining activity toward azocoll was determined under standard assay conditions. Each point represents an average of the values obtained in four independent experiments. The vertical bars represent standard deviations (solid line, 30 min; dotted line, 1 h).

Table 2. Effects of Various Reagents on the Activity of S. parvulus Collagenase

<table>
<thead>
<tr>
<th>Inhibitor</th>
<th>Concentration<sup>a</sup></th>
<th>Inhibition<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>EDTA</td>
<td>1</td>
<td>89</td>
</tr>
<tr>
<td>8-Quinolinol</td>
<td>1</td>
<td>73</td>
</tr>
<tr>
<td>o-Phenanthroline</td>
<td>1</td>
<td>63</td>
</tr>
<tr>
<td>2,3-Dimercapro-1-propanol</td>
<td>1</td>
<td>53</td>
</tr>
<tr>
<td>t-Cysteine</td>
<td>10</td>
<td>26</td>
</tr>
<tr>
<td>Bestatin</td>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>Leupeptin</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>Iodoacetic acid</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>Benzanidine</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>Bovine pancreatic trypsin inhibitor</td>
<td>0.1</td>
<td>7</td>
</tr>
<tr>
<td>Diisopropylfluorophosphate</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Tosyl-L-phenylalanine chloromethyl ketone</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

^aFinal concentration in the assay mixture.

The collagenase from *Streptomyces* sp. 3B has been reported to be less stable, with an optimal temperature of 37 °C. Other collagenases have been reported to be stable up to 40 °C, or near 50 °C. Therefore the temperature stability of the present enzyme appears to be higher than those of most other collagenases. The enzyme was strongly inhibited by metal-chelating agents, such as EDTA, 8-quinolinol, o-phenanthroline, and 2,3-dimercapro-1-propanol, but was rather insensitive to inhibitors of serine and cysteine endopeptidases and aminopeptidases, as shown in Table 2. This indicates that the enzyme is a typical metalloendopeptidase, like many other bacterial collagenases containing an essential Zn²⁺. Strong inhibition by EDTA and o-phenanthroline has also been reported for collagenases from *Streptomyces* sp. A8 and 3B.

As shown in Fig. 5, PZ-peptide, a typical synthetic peptide substrate for collagenases, was cleaved specifically at the Leu-Gly bond. Under similar conditions, approximately 70% hydrolysis occurred in 30 min, and complete hydrolysis in several h at this peptide bond, and no hydrolysis was observed at other peptide bonds (data not shown). This is consistent with the fact that the crude enzyme (collagenase N-2) used in this study has been reported to cleave bovine tendon collagen (Sigma, St. Louis, MO) specifically at X-Gly bonds (X, predominantly Hyp and Ala), but scarcely to hydrolyze bovine serum albumin or casein. These results indicate that the purified enzyme is a member of the bacterial collagenase family. The kinetic parameters, <i>K_m</i> and <i>V_{max}</i> values, were determined to be 0.60 ± 0.03 mM and 37 ± 2 μmol/1·min respectively. The <i>V. parahaemolyticus</i> and <i>C. histolyticum</i> collagenases have been reported to have <i>K_m</i> values of 1.06 mM and 14.82 mM respectively toward 2-furanacryloyl-Leu-Gly-Pro-Ala at pH 8.0 at 25 °C. Thus the <i>K_m</i> value of the present enzyme toward PZ-peptide was apparently similar to that of the <i>V. parahaemolyticus</i> collagenase, although the substrates used were different.

N-terminal sequencing of the purified enzyme yielded a single sequence of 33 residues. In addition, internal amino acid sequences of 135 residues in total were also determined at the protein level by analyzing a tryptic digest of the purified enzyme. These peptide sequences were found to agree completely with the protein sequence deduced from DNA sequencing (Fig. 6), indicating the homogeneity of the purified enzyme. The complete amino acid sequence of the prepro form of the collagenase was deduced by cloning and nucleotide sequencing of the gene clone obtained from *S. parvulus*, as shown in Fig. 6. The total number of residues was 864, and the calculated relative molecular mass was 93,560. The N-terminal and some internal amino acid sequences determined at the protein level are also included in Fig. 6. Thus the prepro enzyme was composed of 864 amino acid residues, including a 408-residue prepro peptide and a 456-residue mature enzyme. In the prepro peptide, the N-terminal 33 residues and the remaining 375 residues were predicted to be the signal peptide and the propeptide respectively.

The mature enzyme is produced by cleavage at the Ser-Ser bond. *S. parvulus* therefore should produce an endopeptidase capable of cleaving this peptide bond. Purification and characterization of this processing enzyme would be interesting, especially since no
endopeptidase with such a specificity is known. The calculated relative molecular mass and pI value of the mature enzyme were 49,368 and 5.21 respectively. This relative molecular mass is roughly consistent with that (approximately 52,000) for the purified enzyme as determined by SDS–PAGE. The relative molecular masses reported for other collagenases from *Streptomyces* sp. are highly variable: 35,000, 12) 30,000–40,000,15) 75,000,13) 100,000 (type I) and 90,000–110,000 (type II),14) and 116,000 (type I) and 97,000 (type II).16) Thus the molecular mass of the present enzyme was different from any of these collagenases. These results indicate that there are marked variations in structural and enzymatic properties even among the *Streptomyces* collagenases.

The enzyme had a peptidase domain with a metallopeptidase active-site motif, His-Glu-X-X-His, at positions 527–531 (prepro protein numbering is used throughout), including the putative catalytic Glu528 and two metal ligands, His527 and His531, and a third putative metal ligand, Glu556. The enzyme is thought to have a PKD (polycystic kidney disease) domain 30) (residues 678–737) and a PPC (bacterial pre-peptidase C-terminal) domain 31) (residues 781–851) in the C-terminal region as judged by the domain structure of the *S. coelicolor* collagenase (CAA16449).

Fig. 6. Nucleotide and the Deduced Amino Acid Sequences of *S. parvulus* Collagenase.

The initiation codon was predicted to be GTG at position 271, as in the case of the *S. coelicolor* ortholog. The deduced N-terminal amino acid sequence and the amino acid sequences of the tryptic peptides determined are shown in one-letter code below the nucleotide sequence, and are underlined. N-Term, the N-terminal sequence of the enzyme; T, tryptic peptide. Numbers stand for peptide peak numbers on HPLC. The peptide number is shown before each peptide, except for T-6, T-8, and T-19 which are shown after the peptide. X, residue not unambiguously identified. An asterisk indicates a stop codon.

endopeptidase with such a specificity is known. The calculated relative molecular mass and pI value of the mature enzyme were 49,368 and 5.21 respectively. This relative molecular mass is roughly consistent with that (approximately 52,000) for the purified enzyme as determined by SDS–PAGE. The relative molecular masses reported for other collagenases from *Streptomyces* sp. are highly variable: 35,000, 12) 30,000–40,000,15) 75,000,13) 100,000 (type I) and 90,000–110,000 (type II),14) and 116,000 (type I) and 97,000 (type II).16) Thus the molecular mass of the present enzyme was different from any of these collagenases. These results indicate that there are marked variations in structural and enzymatic properties even among the *Streptomyces* collagenases.

The enzyme had a peptidase domain with a metallopeptidase active-site motif, His-Glu-X-X-His, at positions 527–531 (prepro protein numbering is used throughout), including the putative catalytic Glu528 and two metal ligands, His527 and His531, and a third putative metal ligand, Glu556. The enzyme is thought to have a PKD (polycystic kidney disease) domain 30) (residues 678–737) and a PPC (bacterial pre-peptidase C-terminal) domain 31) (residues 781–851) in the C-terminal region as judged by the domain structure of the *S. coelicolor* collagenase (CAA16449).
The amino acid sequences of a number of bacterial collagenases have been deduced from the nucleotide sequences of their genes, but only the sequence of the S. coelicolor collagenase has been determined among Streptomyces species. Among these, the collagenases from S. coelicolor, Micrococcus xanthus (YP_634336), and V. arginolyticus are among the most homologous to the present enzyme, and their sequences are compared in Fig. 7. Among the bacterial collagenases, the N-terminal sequences of the mature forms have been determined for the present enzyme (this study) and for the collagenases from V. alginolyticus,11) V. anguillarum,32) C. perfringens,7) and C. histolyticum.33) There is a marked difference in the number of residues from the N-terminus to the first His residue of the active-site motif. These are 118, 147, 412, and 416 residues for the present enzyme, V. anguillarum, V. alginolyticus, and C. perfringens enzymes respectively, and 414 and 415 residues for the two enzymes from C. histolyticum.

Since the 456-residue enzyme is the only active form identified so far for the present enzyme, we assume that this form is the mature enzyme. The cleavage sites were found to be Ser-Thr, His-Ala, and Arg-Ala bonds in the collagenases from V. alginolyticus, V. anguillarum, and C. perfringens respectively, and Ser-Ile, Arg-Ala, and Arg-Val bonds in the collagenases G, A, and H from C. histolyticum respectively. Thus, the cleavage sites of Ser-Thr and Ser-Ile in the collagenases of V. alginolyticus and C. histolyticum (collagenase G) respectively are similar to that of the present enzyme (viz., Ser-Ser).

On the other hand, the cleavage sites in the other collagenases, His-Ala, Arg-Ala, Arg-Ala, and Arg-Val, have a basic residue at the P1 position and a small aliphatic residue at the P1' position. No marked sequence homology was to be seen, however, beyond the P1 and P1' positions. Hence a few types of processing enzymes of different specificities might be present. The differences in processing site, and hence in the size of the pro part, are thought to be due to differences in the mode of processing of proenzymes by different processing enzymes.

Fig. 7. Amino Acid Sequence Comparison of S. parvulus Collagenase with Homologous Collagenases.

The amino acid sequences of the prepro forms of the collagenases from S. parvulus (this study), S. coelicolor (CAA16449), M. xanthus (YP_634336), and V. alginolyticus (EAS77672) are aligned. The active site residues are indicated by *, and the N-terminal residues of the S. parvulus and V. alginolyticus enzymes are indicated by # and + respectively. The residues common to the S. parvulus collagenase are shaded.
specific processing enzymes in the respective bacteria. To our knowledge, the mechanism of activation of the proenzymes of bacterial collagenases has not been studied so far. It would be interesting to elucidate the activation mechanism of the present enzyme, including characterization of the processing enzyme.

When the sequence of the present enzyme in mature form was compared with the corresponding parts of other enzymes, the sequence identities were calculated to be 73%, 49%, and 38% with the collagenases from *S. coelicolor*, *M. xanthus*, and *V. alginolyticus* respectively. On the other hand, the identity with the *C. histolyticum* collagenase was 26%. Thus the present collagenase was most closely related to the collagenase from *S. coelicolor*. Moreover, the *S. coelicolor* prepro enzyme (865 residues) shows significant similarity to the present enzyme in the size and sequence of the prepro moiety as well, as shown in Fig. 7. The N-terminal sequences of both prepro proteins start at the same position. These results indicate that the present enzyme is a member of the *Vibrio* collagenase subfamily (*MEROPS* M9A) rather than the *Clostridium* collagenase subfamily (*MEROPS* M9B). This was further confirmed by construction of a phylogenetic tree based on the amino acid sequences of the prepro forms of some typical bacterial collagenases, as shown in Fig. 8. The active-site motif and the third metal ligand Glu are all conserved in these enzymes.

The secondary structures of the prepro forms of the present enzyme and the *S. coelicolor* enzyme as predicted by the GOR4 program are compared in Fig. 9a and b. They are very much alike, but show some differences, especially in the N-terminal regions (positions 420–450) of the mature forms. The secondary structure contents of the mature forms of both enzymes were estimated to be as follows: present enzyme, \(\alpha \)-helix, 20.2%, and \(\beta \)-strand, 24.3%; the *S. coelicolor* enzyme, \(\alpha \)-helix, 12.4%, and \(\beta \)-strand, 34.9%. Similar results were obtained by the Chou-Fasman method (data not shown), and the secondary structure contents were estimated to be as follows: present enzyme, \(\alpha \)-helix, 17.8%, and \(\beta \)-strand, 35.3%; the *S. coelicolor* enzyme, \(\alpha \)-helix, 11.3%, and \(\beta \)-strand, 35.9%. Thus the present enzyme appears to be richer in \(\alpha \)-helix than the *S. coelicolor* enzyme. Figure 9c and d shows a comparison of the hydropathy plots of the two enzymes. Again they are very similar, but show some differences. In the mature forms, significant differences are observed at positions 420–480 and 650–670. Hence both enzymes presumably possess very similar tertiary structures, but with some local differences. So far, however, no crystal structure has been solved for bacterial collagenases. Thus elucidation of the crystal
structures of the present enzyme and others is highly desirable for further understanding of the structure/function relationships and design of useful inhibitors of bacterial collagenases.

The results of Southern-blot hybridization analysis of the genomic DNA from S. parvulus are shown in Fig. 10. Although the DNA region used in Southern hybridization, nucleotides 1531–2423 in Fig. 6, involves no restriction site of the enzymes used for digestion of the genomic DNA, two or three hybridized bands are present in every lane of Fig. 10. This suggests the existence of another gene homologous to the cloned one. This gene might correspond to the minor enzyme that was not characterized, partly due to the paucity of the enzyme sample. Although the action of the minor enzyme on PZ-peptide was not analyzed, it is assumed to have the same specificity as the major enzyme, as judged by the specificity of the crude enzyme sample toward collagen. Further studies are necessary to identify the minor enzyme.

Acknowledgments

We are grateful to Nitta Zeratin KK (Osaka, Japan) for the kind gift of crude collagenase (collagenase N-2). We also wish to thank Dr. S.B.P. Athauda for helpful technical advice. This work was supported in part by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

References