Communication

Gateway Binary Vectors with the Bialaphos Resistance Gene, bar, as a Selection Marker for Plant Transformation

Shinya Nakamura,1 Shoji MaNo,2,3 Yuji Tanaka,1 Masato Ohnishi,1 Chihiro Nakamori,2 Masami Araki,2 Tomoko Niwa,3 Mikio Nishimura,2,3 Hironori Kaminaka,5 Tsuyoshi Nakagawa,1,6 Yutaka Sato,4,6 and Sumie Ishiguro4,1

1Department of Molecular and Functional Genomics, Center for Integrated Research in Science, Shimane University, Matsue 690-8504, Japan
2Department of Cell Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
3Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan
4Department of Biological Mechanisms and Functions, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
5Department of Bioresource Sciences, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
6PRESTO, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan

Received March 15, 2010; Accepted May 7, 2010; Online Publication, June 7, 2010

[doi:10.1271/bbb.100184]

We constructed two series of Gateway binary vectors, pGWBs and R4pGWBs, possessing the bialaphos resistance gene (bar) as a selection marker for plant transformation. The reporters and tags employed in this system are sGFP, GUS, LUC, EYFP, ECFP, G3GFP, mRFP, TagRFP, 6xHis, FLAG, 3xHA, 4xMyc, 10xMyc, GST, T7 and TAP. Selection of Arabidopsis transformants with BASTA® was successfully carried out using both plate-grown and soil-grown seedlings. Transformed rice calli and suspension-cultured tobacco cells were selected on plates containing BASTA® or glufosinate-ammonium. These vectors are compatible with existing pGWB and R4pGWB vectors carrying kanamycin and hygromycin B resistance.

Key words: bialaphos resistance gene (bar); binary vector; Gateway cloning; glufosinate; plant transformation

Bialaphos and its degraded derivative glufosinate (also known as phosphinothricin) are active ingredients of widely used herbicides (Herbiace® and BASTA®) that inhibit glutamine synthetase, an essential enzyme for ammonium assimilation in plants. Although these compounds also inhibit the corresponding enzyme of the bialaphos-producing actinobacterium, Streptomyces hygroscopicus, it has a bialaphos resistance gene (bar) encoding phosphinothricin acetyltransferase, and thus is resistant to them.1,2) The bar gene has been used to create herbicide-resistant plants for both research and commercial purposes.

We have constructed many Gateway binary vectors containing various reporter proteins and epitope tags.3,4) These vectors have two alternative selection markers for plant transformation, the neomycin phosphotransferase II gene (NPTII), conferring kanamycin resistance (Km®), and the hygromycin phosphotransferase gene (HPT), conferring hygromycin B resistance (Hyg®). Such selectability is especially important for multiple transformations. For example, a second marker gene is necessary for the retransformation of plants that already have a primary transgene with a primary marker gene. However, plants to be used for transformation sometimes have both marker genes already, because they are commonly and widely used markers for plant transformation. Hence, we decided to develop a new series of Gateway binary vectors with the bar gene to serve as a third choice for drug resistance. Another advantage of such herbicides in selection of transformants is the absence of any necessity of sterile agar media, which is required for selection with kanamycin or hygromycin B, because splaying herbicides easily kills soil-grown plants that do not have the corresponding resistance gene.

In this study, we developed two series of Gateway binary vectors with the bar marker gene: pGWB-type vectors containing attR1 and attR2 sites, suitable for promoter analysis and ectopic expression of cDNA,3) and R4pGWB-type vectors with attR4 and attR2 sites, suitable for the expression of cDNA under a favorite promoter.5) These vectors were denominated with 600-series numbers, the “6” representing the bar marker gene, and the last two digits (which are common to all our Gateway binary vectors) representing the kind of reporter and tag. In total, 46 pGWB6xx series and 17 R4pGWB6xx series vectors are available in making fusion proteins with 16 various reporters and tags. The

1 To whom correspondence should be addressed. Tel: +81-52-789-4097; Fax: +81-52-789-4094; E-mail: guronyan@agr.nagoya-u.ac.jp
2 To whom material requests should be sent. E-mail: tknagaw@life.shimane-u.ac.jp

Abbreviations: bar, bialaphos resistance gene; CaMV, cauliflower mosaic virus; Cm®, chloramphenicol resistance; ECFP, enhanced cyan fluorescent protein; EYFP, enhanced yellow fluorescent protein; G3GFP; G3 green fluorescent protein; GUS, β-glucuronidase; HPT, hygromycin phosphotransferase; Hyg, hygromycin B resistance; Km®, kanamycin resistance; LUC, luciferase; mRFP, monomeric red fluorescent protein; NPTII, neomycin phosphotransferase II; Pnos, nopaline synthase promoter; RFP, red fluorescent protein; sGFP, synthetic green fluorescent protein with S65T mutation; Spc®, spectinomycin resistance; TAP, tandem affinity purification; TagRFP, tag red fluorescent protein; Tnos, nopaline synthase terminator.
bar marker gene is driven by the nopaline synthase promoter (Pnos) and is followed by the nopaline synthase terminator (Tnos).

To construct the new vectors, plasmids were handled by standard methods. KOD DNA polymerase (Toyobo, Tokyo, Japan) was used for PCR. All the adapters and primers used in this study are listed in Supplemental Table 1 (see Biosci. Biotechnol. Biochem. Web site). The PCR-amplified region and ligation junctions were confirmed by sequence analysis for all vectors. The Pnos:bar:Tnos marker was constructed as follows. The SacI adapter was introduced into the SacI site of pARK5 to destroy the SacI site between bar and Tnos, and the resulting vector was named pARK5ΔSacI. The bar:Tnos sequence was prepared by PCR using pARK5ΔSacI as template, with Pnos-bar-F and PhsBI-Tnos-R primers. The Pnos sequence was prepared by PCR using pYLTAC as template, with PhsBI-Pnos-F and Pnos-bar-R as primers. These products were diluted, mixed, and used in a second PCR with PhsBI-Pnos-F and PhsBI-Tnos-R primers. The amplified product, in which Pnos and bar:Tnos were joined (Pnos:bar:Tnos), was digested by PhsBI and used to replace Pnos:HPT:Tnos of pGWB500 to make pGWB600 (Pnos:bar:Tnos). LB medium containing 100 mg/l of spectinomycin was used to select E. coli DH5α, which harbors these plasmids. The Gateway cassette and reporter/tag genes were introduced into pGWB600, as described previously, to make pGWB601-661s and R4pGWB601-659s. E. coli DB3.1 cultures harboring these vectors were selected on LB medium containing 100 mg/l of spectinomycin and 30 mg/l of chloramphenicol.

Figure 1 shows the structures of the pGWB601-661s and R4pGWB601-659s. All vectors carry the Pnos:bar:Tnos marker placed in reverse orientation relative to the direction of the gene cloned by the LR reaction (Fig. 1A). The structures around the Gateway recombination sites are illustrated in Fig. 1B. The R1–R2 type cassettes in the pGWB601-661s (Fig. 1B, left panel) are the same structures as those in previously constructed vector series pGB4xxx (with the Km marker) and pGWB5xxx (with the Hyg marker), and are compatible with attL1-(promoter and/or cDNA)-attL2 entry clones. The R4-R2 type cassettes in the R4pGWB601-659s (Fig. 1B, right panel) are the same structures as those in R4pGB4xxx and R4pGB5xxx, and are compatible with a combination of the attL4-promoter-attR1 and attL1-cDNA-attL2 entry clones. Figure 1C summarizes the 16 reporters and tags employed in each vector. The last two digits of the vector names are as with the other pGWB and R4pGWB vectors. The complete nucleotide sequence of the pGWB601-661s and R4pGWB601-659s reported here appear in the GenBank/EMBL/DDBJ database under accession nos. AB543110 to AB543172. The expected linker sequences around the attB sites that should be created after the LR reaction are shown in Supplemental Fig. 1 for the pGWB601-661s, and in Supplemental Fig. 2 for the R4pGWB601-659s (see Biosci. Biotechnol. Biochem. Web site).

To test the performance of these vectors, we used them in the transformation of Arabidopsis thaliana (Arabidopsis) plants, Oryza sativa (rice) calli, and suspension-cultured Nicotiana tabacum (tobacco) cells, and determined the optimum concentrations of BASTA®, or glufosinate-ammonium for selection. In Arabidopsis, promoter analysis of the F-box family protein 3 gene (AtFBL3) was done with pGWB633. AtFBL3 (AT5G01720) encoded a leucine-rich repeat protein containing an F-box motif in the N-terminal region, and was expressed predominantly in the vascular system (S. Nakamura, unpublished results). The promoter fragment spanning the sequence between +2006 and +3 (the adenosine of the translation initiation codon was designated +1) of AtFBL3 was prepared from genomic DNA by adapter PCR with primers AtFBL3-pro-attB1 and AtFBL3-pro-attB2. The amplified fragment was cloned into pDONR201 (Invitrogen, Carlsbad, CA) by the BP reaction following the manufacturer’s instructions for construction of an attL1-PattB1-attL2 entry clone. Then the promoter fragment was introduced into pGWB633 by the LR reaction following the manufacturer’s instructions, to be fused with a β-glucuronidase (GUS) reporter. The PattB1-GUS construct obtained was introduced into Agrobacterium tumefaciens C58 C1 (pMP90), and was used in the transformation of Arabidopsis (Col-0 accession) using a floral dip procedure. In order to determine the appropriate conditions for the selection of transgenic Arabidopsis on plates using BASTA® as the selection agent, we sowed T1 seed on an agar plate of Murashige and Skoog medium containing 0.0027, 0.0054, or 0.011% BASTA® (Bayer CropScience, Monheim am Rhein, Germany). BASTA® contained 18.5% glufosinate-ammonium; thus, the final concentrations of glufosinate-ammonium in the selection media were 5, 10, and 20 mg/l, respectively. BASTA® at 0.0054% (10 mg/l of glufosinate-ammonium) was the most effective. In a typical result, shown in Fig. 2A, more than 2% of the T1 seed germinated and grew well on a selection medium containing 0.0054% BASTA®. Most T1 seedlings surviving on the plate showed strong expression of the PattB1-GUS gene, especially in the vascular tissues (Fig. 2B). Alternatively to selection on an agar plate, BASTA®-resistant T1 transformants were identified by spraying BASTA® solution (0.033% BASTA® with 0.01% Silwet L-77) on soil-grown seedlings at 7 and 9 d after germination, and by sowing T1 seed onto a piece of rock wool that was initially soaked with 0.011% BASTA® solution (data not shown). Note that a detergent (Silwet L-77) was added to the BASTA® solution only when the solution was used for spraying.

In experiments with rice, G3 green fluorescent protein (G3 GFP) was expressed under the control of the cauliflower mosaic virus (CaMV) 35S promoter. The G3 GFP sequence was amplified from a cloned G3 GFP gene by adapter PCR with primers G3 GFP-attB1 and G3 GFP-attB2. The amplified fragment was cloned into pDONR201 by the BP reaction to construct an attL1-G3 GFP-attL2 entry clone. Then the G3 GFP gene was introduced into pGWB602 by the LR reaction to make PSSG3 GFP. This construct was introduced into A. tumefaciens EHA101 by electroporation. Transformation of rice (cv. Yukihikari or Nipponbare) was performed by the method of Hiei et al. Transformed rice calli were selected on N6D selection medium containing 0.025, 0.05, 0.1, or 0.2% BASTA® (final
Selective conditions were 0.05% BASTA, 185, and 370 mg/l, respectively). The most efficient concentration of glufosinate-ammonium, 46.3, 92.5, and 185 mg/l, respectively, resulted in the formation of resistant calli on the selection medium containing 0.05% glufosinate-ammonium for Yukihikari, and 0.1% glufosinate-ammonium for Nipponbare. Typically, more than 10% of Yukihikari fusion protein13) was cloned into pENTR2B (Invitrogen) and expressed and observed to determine intracellular localization. A DNA fragment encoding the RFP-PTS1 fusion protein was introduced into A. tumefaciens EHA101 by electroporation. In transformation experiments with suspension-cultured tobacco cells, red fluorescent protein (RFP) fused with peroxisome targeting signal 1 (PTS1) was expressed and observed to determine intracellular localization. A DNA fragment encoding the RFP-PTS1 fusion protein was cloned into pENTR2B (Invitrogen) to make an attR1-attR2 construct (pENTR2B-661). The right panel shows the structures of vectors possessing an attR1-attR2 (R1-R2) type cassette (pGW601-661). The right panel shows the structures of vectors possessing an attR4-attR2 (R4-R2) type cassette (p4pGW601-661). The left panel shows the structures of vectors possessing an attR1-attR2 (R1-R2) type cassette (pGW601-661-659). Cmr', chlamyphomonas resistance; ccbB, negative selection marker for bacteria; R1, attR1; R2, attR2; R4, attR4. C, Reporters and tags employed in the Gateway binary vectors illustrated in (B). The first digit, 6, of the vector number represents bialaphos resistance, and the last two digits indicate the reporter/tag and the type of fusion. sGFP, synthetic green fluorescent protein with S65T mutation; FLAG, FLAG-tag; mRFP, monomeric red fluorescent protein; EYFP, enhanced yellow fluorescent protein; ECFP, enhanced cyan fluorescent protein; GUS, Glucuronidase; G3FP, G3 green fluorescent protein; mKFP, monomeric red fluorescent protein; TagRFP, tag red fluorescent protein. In transformation experiments with suspension-cultured tobacco cells, red fluorescent protein (RFP) fused with peroxisome targeting signal 1 (PTS1) was expressed and observed to determine intracellular localization. A DNA fragment encoding the RFP-PTS1 fusion protein was cloned into pENTR2B (Invitrogen) to make an attR1-attR2 construct (pENTR2B-661). Then the RFP-PTS1 fragment was introduced into pGW602 by the LR reaction to construct p35S-RFP-PTS1 (pRHTPS1-Bs). This construct was introduced into A. tumefaciens EHA101 by electroporation.
poration. Transformation of suspension-cultured tobacco Bright Yellow 2 (BY-2) cells was done by the method of Matsuoka and Nakamura.14) Transformants were selected on a medium containing 1, 2, 5, or 10 mg/l glufosinate-ammonium (Sigma-Aldrich, St. Louis, MO). The most effective selection was with 2 mg/l of glufosinate-ammonium (Fig. 2F). Resistant cells grown on the plate were incubated for 3 weeks at 26.5 °C under continuous darkness. G, H, I. Microscopic images of transgenic BY-2 cells possessing the P35S::PTS1 gene. Differential interference contrast microscopy (G), RFP fluorescence (H), and merge of G and H (I). Bars = 20 μm.

In conclusion, we developed a new series of Gateway binary vectors containing the bar marker have been made in several laboratories.16–19) Our bialaphos-resistant vectors have great advantages in the availability of many reporters and tags to express fusion proteins and compatibility with existing Km\(^{+}\) and Hyg\(^{+}\) vectors, which have the same structures with the exception of the bar marker gene.3–5) By using these Gateway binary vectors, one can make a variety of fusion constructs with the desired selection marker and carry out many transgenic experiments under unified conditions. All the vectors described in this report will be made available for noncommercial research purposes, although the permission of the original developers is required for some reporters. The e-mail address to request the vectors is tnakagaw@life.shimane-u.ac.jp.

Acknowledgments

We thank Dr. Hiroyuki Anzai (Ibaraki University) for providing pARK5 and Dr. Roger Tsien (University of California San Diego) for providing mRFP. We also thank Ms. Tomoko Atsumi for the maintenance of plant materials and Ms. Kumiko Oba for preliminary data collection. This work was supported by Grants-in-Aid for Scientific Research on Priority Areas to MN (16085209), TNa (19039025), and SI (19039014, 21024004) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan, and by Grants-in-Aid for Scientific Research to TNi (19010675), SM (20570045), and TNa (21570046) from the Japan Society for the Promotion of Science (JSPS). TNi was supported by JSPS Research Fellowships for Young Scientists. SN was a participant in the technical support program of the Plant Science Education Unit of the Nara Institute of Science and Technology, Nara, Japan.

References