Bioscience, Biotechnology, and Biochemistry
Online ISSN : 1347-6947
Print ISSN : 0916-8451
Biochemistry & Molecular Biology Regular Papers
Purification and Characterization of UDP-Arabinopyranose Mutase from Chlamydomonas reinhardtii
Ayana KOTANIMaki TSUJIYasushi AZAMATadashi ISHIITakumi TAKEDATetsuro YAMASHITAMie SHIMOJIMATeruko KONISHI
Author information
JOURNAL FREE ACCESS

2013 Volume 77 Issue 9 Pages 1874-1878

Details
Abstract

Chlamydomonas reinhardtii cells are surrounded by a mixture of hydroxyprolin-rich glycoproteins consisting of L-arabinose, D-galactose, D-glucose, and D-mannose residues. The L-arabinose residue is thought to be attached by a transfer of UDP-L-arabinofuranose (UDP-Araf), which is produced from UDP-L-arabinopyranose (UDP-Arap) by UDP-arabinopyranose mutase (UAM). UAM was purified from the cytosol to determine the involvement of C. reinhardtii UAM (CrUAM) in glycoprotein synthesis. CrUAM was purified 94-fold to electrophoretic homogeneity by hydrophobic and size-exclusion chromatography. CrUAM catalyzed the reversible conversion between UDP-Arap and UDP-Araf and exhibited autoglycosylation activity when UDP-D-[14C]glucose was added as substrate. Compared to the properties of native and recombinant CrUAM overexpressed in Escherichia coli, native CrUAM showed a higher affinity for UDP-Arap than recombinant CrUAM did. This increased affinity for UDP-Arap might have been caused by post-translational modifications that occur in eukaryotes but not in prokaryotes.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2013 by Japan Society for Bioscience, Biotechnology, and Agrochemistry
Previous article Next article
feedback
Top