Previously, Abe et al.\(^1\) presumed that elymoclavine had the formula I, in which the exact position of the easily reducible double bond must be between C\(^8\) and C\(^9\) or between C\(^7\) and C\(^8\). Our recent work has given a clue to the verification of the presumption. Abe et al. showed in the same report that elymoclavine yielded on catalytic hydrogenation a base, C\(^{16}\)H\(_{20}\)O\(_2\), m.p. 289\(^\circ\) (dec.), \([\alpha]_D^{20} = -60\(^\circ\)\) (ethanol), \([\alpha]_D^{20} = -92\(^\circ\)\) (pyridine). We have since succeeded in obtaining from the mother liquor of the above-mentioned base an additional base in very small yield; leaflets from methanol, m.p. 188\(^\circ\), \([\alpha]_D^{20} = -40\(^\circ\)\), \([\alpha]_D^{20} = -59\(^\circ\)\) (c. 0.11 in ethanol), \([\alpha]_D^{20} = -65\(^\circ\)\), \([\alpha]_D^{20} = -81\(^\circ\)\) (c. 0.22 in pyridine). Anal. Found: C, 75.15; H, 7.73; N, 10.86. Calcd. for C\(^{16}\)H\(_{20}\)O\(_2\)N\(_2\): C, 74.96; H, 7.86; N, 10.93%. At the same time, it was found that the previously obtained base and the newly obtained one are identical in crystal form, melting point, specific rotation, paper chromatographic behavior and infrared spectrum with dihydro-lysergol\(^2\) (\(\alpha\)-dihydrolysergol\(^3\), formula II) and dihydro-isolysergol (I)\(^2\) (\(\beta\)-dihydrolysergol\(^3\), formula III), respectively. This at once supports the presumption that elymoclavine has an alcohol group at C\(^8\) and that the double bond in elymoclavine must be located between C\(^5\) and C\(^8\) or between C\(^7\) and C\(^8\). On the other hand, we have found that elymoclavine yields on oxidation with potassium bichromate in dilute sulfuric acid a basic substance; thick plates from methanol or acetone, m.p. 221\(^\circ\) (dec.), \([\alpha]_D^{20} = +157\(^\circ\)\), \([\alpha]_D^{14} = +203\(^\circ\)\) (c. 0.2 in ethanol), \([\alpha]_D^{20} = +153\(^\circ\)\), \([\alpha]_D^{14} = +192\(^\circ\)\) (c. 0.2 in pyridine). Anal. Found: C, 71.04; H, 6.83; N, 10.23. Calcd. for C\(^{16}\)H\(_{18}\)O\(_2\)N\(_2\): C, 71.09; H, 6.71; N, 10.36%. This substance is identical with penniclavine\(^4\), \(^5\), \(^6\) (formula IV) not only in crystal form, melting point and specific rotation, but also in color reaction, chromatographic behavior, ultraviolet spectrum and infrared spectrum. The fact indicates that the double bond in elymoclavine is at the position between C\(^5\) and C\(^8\).

Moreover, it has been found that agroclavine also yields on the same oxidation a basic substance, C\(^{16}\)H\(_{18}\)O\(_2\), m.p. 225\(^\circ\) (dec.), \([\alpha]_D^{20} = +145\(^\circ\)\) (c. 0.2 in ethanol), \([\alpha]_D^{18} = +137\(^\circ\)\) (c. 0.18 in pyridine), which is identical in all
respects with triseclavine6). This finding will support the view that the formula for triseclavine proposed by us in the preceding communication6) would be correct.

\textit{The Laboratory of the Institute for Fermentation attached to Takeda Pharmaceutical Industries, Ltd. Osaka, Japan}

References
\begin{enumerate}
\item M. Abe, S. Yamatodani, T. Yamano and M. Kusumoto, This Bulletin, 1, 92, (1955).
\end{enumerate}

[Received, Feb. 20, 1955]