Production of α-Ketoglutaric Acid from Salicylic Acid by Bacteria

Sir:

It is known that salicylic acid is an intermediate of the oxidative degradation of naphthalene, phenanthrene and anthracene, and that it is transformed into catechol by microorganisms.\(^1\)\(^2\)\(^3\) The production of α-ketoglutaric acid as a metabolite of salicylic acid, however, has not yet been known.

The present paper briefly describes that α-ketoglutaric acid (sometimes also pyruvic acid) was produced from salicylic acid by bacteria. Many strains which utilized salicylic acid as a sole carbon source were isolated from soil and other natural materials. The isolated bacterial strains produced a large amount of keto acids in the culture fluid as shown in Table I. Strain K102 was grown in the

<table>
<thead>
<tr>
<th>Strain No.</th>
<th>Salicylic acid added (mg/ml)</th>
<th>Salicylic acid consumed (mg/ml)</th>
<th>α-Ketoglutaric acid produced (mg/ml)</th>
<th>Pyruvic acid produced (mg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K62</td>
<td>10.0</td>
<td>9.67</td>
<td>0.22</td>
<td>0.00</td>
</tr>
<tr>
<td>K361</td>
<td>10.0</td>
<td>9.90</td>
<td>0.72</td>
<td>0.00</td>
</tr>
<tr>
<td>K132-2</td>
<td>10.0</td>
<td>9.87</td>
<td>0.36</td>
<td>0.00</td>
</tr>
<tr>
<td>K102</td>
<td>10.0</td>
<td>9.56</td>
<td>1.12</td>
<td>0.00</td>
</tr>
<tr>
<td>K142</td>
<td>10.0</td>
<td>8.22</td>
<td>0.48</td>
<td>0.32</td>
</tr>
<tr>
<td>K362</td>
<td>10.0</td>
<td>10.0</td>
<td>0.11</td>
<td>1.87</td>
</tr>
<tr>
<td>K221</td>
<td>10.0</td>
<td>7.34</td>
<td>0.21</td>
<td>0.29</td>
</tr>
</tbody>
</table>

* Bacterial strains were grown for 24–30 hours.

(pH 7.0). Cultivation was performed on the reciprocal shaker (130 strokes per min.) at 28°C. After 28 hours, the cells were removed by centrifugation. Residual salicylic acid was precipitated by acidification with sulfuric acid. The filtrate was concentrated to a small volume under the reduced pressure at 40°C. The keto acid in the concentrate was extracted with ether. The solvent was evaporated, and about 100 mg of the keto acid (crude) was obtained, which was isolated in the crystalline form as 2,4-dinitrophenylhydrazone. Paper chromatography of this crystal showed only one spot corresponding to 2,4-dinitrophenylhydrazone of α-ketoglutaric acid. Its melting point was 220°C, and not depressed by mixing with the authentic specimen. The hydrogenation of it gave glutamic acid, which was identified chromatographically.\(^4\) Its infrared spectrum was identical with that of the authentic specimen as shown in Fig. 1. On the other hand,

when strain K362 was grown in the same medium as mentioned above, pyruvic and \(\alpha \)-ketoglutaric acids were simultaneously produced. The taxonomical characteristics of the bacterial strains isolated and the mechanism of the production of these keto acids are under investigation.

We wish to express our thanks to Prof. M. Nakajima, Kyoto University, for the infrared spectral analysis.

Koichi OGATA
Masahiro OSUGI

Department of Agricultural Chemistry,
Faculty of Agriculture, Kyoto University,
Kyoto.

Received January 29, 1966