Microbial Formation of L-Tryptophan from D-Tryptophan

Sirs:

The present paper briefly describes that a large amount of L-tryptophan was produced from D-tryptophan by the intact cells of *Pseudomonas* strain No. 2150. Many investigations have already been reported about the isomerization of D-amino acids, but we have only a few reports concerned with the isomerization of D-tryptophan. Two different mechanisms have been found about the isomeric conversion of D-tryptophan. First of all, Durham\(^1\) reported that the D- to L-isomeric conversion involved the initial oxidation of D-tryptophan to indolepyruvic acid followed by a transamination reaction by a *Flavobacterium* species. On the other hand, Behrman\(^2\) found the presence of a tryptophan racemase in a *Pseudomonas* species. However, an attempt to produce L-tryptophan from D-tryptophan by these isomeric conversions has not yet been reported.

In the course of our investigation on the metabolism of D-tryptophan by bacteria, it was found that a large amount of L-tryptophan was accumulated in the reaction mixture when the intact cells of *Pseudomonas* strain No. 2150 were incubated aerobically in the presence of D-tryptophan and L-amino acids. Results obtained were as follows. *Pseudomonas* strain No. 2150 could grow in an inorganic salt medium containing D-tryptophan as a sole source of nitrogen and produced a reddish brown pigment from D-tryptophan on an organic nutrient medium. The taxonomic properties of *Pseudomonas* strain No. 2150 were examined according to procedure given in Manual of Microbiological Methods.\(^3\) From this examination, it was found that *Pseudomonas* strain No. 2150 was closely resembling *Pseudomonas ovalis*. The microorganisms were grown in the medium consisting of glucose 1.0%, peptone 0.5%, yeast extract 0.2%, KH₂PO₄ 0.1%, K₂HPO₄ 0.1%, MgSO₄·7H₂O 0.05%, n-tryptophan 0.1% ~ 0.2%, and tap water (pH 7.0 ~ 7.4). 100 ml of the medium was introduced into 500 ml shaking flasks and after it was inoculated, the cultivation was performed on a reciprocal shaker for 20 hr at 30°C. The cells were harvested by centrifugation and washed with physiological saline.

The washed cells thus obtained were resuspended to a 1/20M phosphate buffer (pH 7.6), and employed for the reaction. The reaction mixture consisted of D-tryptophan, L-amino acids as amino donor, and the washed cell suspensions. The reaction was proceeded in the test tube under shaking condition at 30°C for 40 hr. L-Tryptophan production was measured by the microbiological assay using an *Aerobacter aerogenes* which was induced by the UV irradiation. Determination of D- or L-tryptophan oxidation activity was carried out by manometric measurement of O₂ uptake. L-Tryptophan was accumulated when the intact cells were incubated with D-tryptophan and L-amino acids. On the other hand, when the same system was incubated in the absence of L-amino acids, a keto acid probably indole pyruvic acid, was accumulated in the reaction mixture, although

formation of L-tryptophan could not be confirmed.

Furthermore, as shown in Fig. 1, d-tryptophan oxidation activity was stronger than L-tryptophan oxidation activity in the cells grown in the medium supplemented with d-tryptophan. From these results, it was assumed that the mechanism of d- to L-isomeric conversion by the intact cells of Pseudomonas strain 2150 involved an oxidative deamination of d-tryptophan followed by a transamination.

To establish the optimal conditions for the formation of L-tryptophan, various conditions were investigated. Table I shows the change of the isomerization activity during growth. It was found that the cells cultured for 21 hr showed an intensive activity of L-tryptophan formation from d-tryptophan, in contrast, cells cultured for 40 hr was less active.

As shown in Fig. 2, L-tryptophan was produced from d-tryptophan in the presence of L-valine, L-isoleucine, or L-leucine at 80~90% isomerization rate during 40 hr incubation. The effect of d-tryptophan concentration was investigated in the reaction system using L-valine as amino donor. Although the increased amount of d-tryptophan caused to reduce the isomerization rate, the amount of L-tryptophan

<table>
<thead>
<tr>
<th>Culture age of cells (hr)</th>
<th>L-Amino acid added</th>
<th>L-tryptophan formed (µmoles)</th>
<th>Rate of Isomerization (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>L-Glutamic acid</td>
<td>20.8</td>
<td>41.6</td>
</tr>
<tr>
<td>21</td>
<td>L-Leucine</td>
<td>42.9</td>
<td>85.8</td>
</tr>
<tr>
<td>21</td>
<td>L-Phenylalanine</td>
<td>+</td>
<td>—</td>
</tr>
<tr>
<td>21</td>
<td>No addition</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>40</td>
<td>L-Glutamic acid</td>
<td>16.5</td>
<td>32.5</td>
</tr>
<tr>
<td>40</td>
<td>L-Leucine</td>
<td>35.1</td>
<td>70.2</td>
</tr>
<tr>
<td>40</td>
<td>L-Phenylalanine</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>40</td>
<td>No addition</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Reaction mixture: D-Tryptophan 50 µmoles, L-amino acid 100 µmoles, 1/20 M phosphate buffer 1.5 ml, cell suspension 0.5 ml, total volume 2.65 ml. Incubated on shaking at 30°C.

![Fig. 1. Oxidation of D-Tryptophan and L-Tryptophan by Intact Cells.](image1)

Table I. Changes of Isomerization Activity During Culture Process

![Fig. 2. Effect of L-Amino Acids on the Conversion of D-Tryptophan to L-Tryptophan.](image2)
accumulation reached to a level of 7.6 mg/ml during 40 hr incubation when 10 mg/ml of D-tryptophan and 15 mg/ml of l-valine were added to the reaction system.

The author wishes to express his gratitude to Prof. H. Iizuka and Dr. S. Tsuru of the Institute of Applied Microbiology, University of Tokyo for their helpful suggestions.

Hiroshi OKAZAKI

The Research Laboratory, Chugai Pharmaceutical Co., Ltd.,
Takataminamicho, Toshimaku,
Tokyo, Japan

Received December 8, 1967