A Red, Fluorescent Protein from Silkworm*

Sir:

In the course of the purification of a nuclease from the digestive juice of silkworm larvae, *Bombyx mori* L., we encountered a red surface-colored, fluorescent protein with interesting chemical and physiological properties. As far as we know, this has not been reported in the previous literature.

After 25~40% acetone precipitate of *n*-butanol-treated juice was saved for the purification of nuclease as described previously,1) the supernatant was further added with cold acetone to 50% concentration. The brown-colored precipitate formed was collected by centrifugation, taken up in 0.5 M NaCl-0.04 M sodium carbonate buffer, pH 10.4 (8700 A280 and 475 A605 units from ca. 3 liters digestive juice), and then filtered through Sephadex G-75 gel (3.9×60 cm) which had been adjusted to the same buffer. The red-colored breakthrough, excluded from the gel network, contained the red protein. The pooled fractions were neutralized with 2 M acetic acid, precipitated with (NH₄)₂SO₄ at 30% saturation, taken up in water, dialysed against 0.1 M NaCl until just dissolved, and again filtered through Sephadex G-200 gel (1.9×60 cm). The red protein was again excluded from the gel and emerged as a single, steep peak, well separated from the trailing components. The protein was precipitated with (NH₄)₂SO₄ at 27% saturation, taken up in 0.02 M Tris-HCl, pH 7.2 and dialysed against the same buffer. The dialysate, 254 A₂₈₀ and 21.4 A₆₀₅ units, was then chromatographed on a DEAE-cellulose column (1.9×30 cm) with 1 liter linear gradient of NaCl from 0 to 0.3 M in the same buffer. The red protein appeared at a NaCl concentration of 0.10 M, giving a single, symmetrical peak, with the brown-colored impurities retained on the top of the column. The relevant eluate, 262 to 372 ml, was concentrated by (NH₄)₂SO₄ precipitation at 27% saturation followed by dialysis against

FIG. 1. Ultracentrifugal Pattern of the Purified Red Protein.

The protein concentration was 0.4% in 0.2 M KCl-0.02 M phosphate buffer, pH 7.5. Photographs were taken at 8 min intervals after reaching 56,100 rpm in a Spinco Model E ultracentrifuge. Sedimentation proceeds from right to left.

* This paper comprises a part of the presentations at the joint meeting of Nishi Nippon and Kansai divisions of the Agricultural Chemical Society of Japan, Okayama, Nov. 19, 1966 and at the annual meeting of the Sericulture Society of Japan, Nagoya, Ap. 2, 1968.

an appropriate buffer. Yield, 110 A_{280} and 18.1 A_{605} units.

The protein gave a homogeneous ultracentrifugal pattern, 6.3 s_{20,w} (Fig. 1). Anal. Found: C, 48.08; H, 6.97; N, 15.31%. Amino acid composition (moles amino acid per 100 moles N atom) Found: 0.96, 0.46, 17.2, 2.9, 8.6, 5.0, 3.4, 5.5, 5.7, 4.9, 3.6, 0.72, 7.7, 0.74, 3.8, 4.8, 3.3, 2.8, and 0.96 for Lys, His, (NH_{3}), Arg, Asp, Thr, Ser, Glu, Pro, Gly, Ala, Half-Cys, Val, Met, Ileu, Leu, Tyr, Phe and Try. Nitrogen recovery, 94%. Analysis was made by Mitamura’s analyzer, 500-II on the 6N HCl hydrolysate (110°C, 48 hr). Half-cystine2) and tryptophan3) were determined separately. Figure 2 shows absorption and fluorescence spectra of the protein, each with two maxima—at 278 and 605 m\u00barmu for the former and 335 and 620 m\u00barmu for the latter. A fluorescence at 335 m\u00barmu should be attributed to tryptophan residues. Strong acid or alkali as well as a few minutes’ boiling caused an immediate, irreversible disappearance of the absorption and fluorescence at the longer wavelength. Addition of sodium dithionite also resulted in rapid decolorization of the protein, the extent of which being proportional to the amount of the reagent added. Ascorbic acid and hydroxylamine also decolorized the protein slowly. Overnight incubation of the protein with 5mM urea or 25 \mu g/ml Pronase P (Kaken Kagaku Co., Tokyo), but not trypsin or chymotrypsin, diminished the red color gradually. In view of the seeming resemblance of the spectral and oxidoreduction characteristics of this substance to those of the blue proteins,4) analysis of the protein-bound metals was attempted by means of emission spectrography and atomic absorption spectrophotometry. But the result was negative. The protein was checked for oxidase activity and found negative towards catechol and cresol. Various attempts of reducing (decolorizing) the protein by linking in vitro with electron transfer systems in the homogenate or subcellular fractions from the silkworm midgut, in the presence or absence of NADH, reduced or oxidized cytochrome c and/or succinate, have also been unsuccessful thus far. The protein was, however, found to counteract severely the physiological activity of rice seedlings, Oryza sativa L. That is, when the plants at 8 leaf stage were cut off the roots and the portion of their leaf-sheath was soaked in the protein soln., they withered a few or 48 hr later at the protein concentration of 100 ppm or 10 ppm in water at 22°C. This withering activity of the protein withstood 5 minutes’ boiling. No change was seen in the control plants.

4) See for example S. Kato, Protein Nucleic acid Enzyme, 8, 73 (1963); H. Shiichi and D. P. Hackett, Arch. Biochem. Biophys., 100, 185 (1963).
After all, nothing can be said assuredly at present as to the structural features and physiological function of this red protein. Only it may be an enzyme or an intermediary constituent of oxidoreduction systems in or not in relation to digestion mechanism of the silkworm larvae. Further study is needed to clarify these points.

We wish to thank Dr. I. Shibuya of Tokyo University for carrying out amino acid analysis, Prof. G. Tomita of this university for fluorescence spectrophotometry and valuable discussion, Mr. S. Tokunaga of Scientific Crime Laboratory, Fukuoka Police Headquarters for emission spectrography, Dr. M. Miyaguchi of Saga University for atomic absorption analysis, and Mr. R. Tsutsui of this institute for operating analytical ultracentrifuge. Collaboration of Profs. Y. Yamada and K. Aizawa of this university in the initial stage of the investigation is gratefully acknowledged. We wish also to thank Prof. K. Hayashiya of Kyoto University of Industrial Arts and Textile Fibers for his keen interest and stimulating discussion.

Jun-Ichiro Mukai
Jun Inouye*
Satoru Akune

Agricultural Chemistry Institute,
* Laboratory of Crop Science,
Faculty of Agriculture,
Kyushu University, Fukuoka

Received September 9, 1968