Structure of a New Metabolite from *Aspergillus chevalieri*

Takashi Hamasaki, Kouzou Nagayama and Yuichi Hatsuda

Faculty of Agriculture, Tottori University, Tottori

Received September 3, 1975

A new metabolite has been isolated from *Aspergillus chevalieri* as colorless needles, mp 294–296°C, [α]_D+46°. It has a dioxopiperazine ring system formed from tryptophan and alanine. Chemical and spectroscopic data indicate that this metabolite is L-alanyl-2-(1,1-dimethylallyl)-L-tryptophan anhydride (I).

During investigation of fungal metabolites, we isolated a new metabolite from a strain of *Aspergillus chevalieri* (Mangin) Thom *et al*. Church IFO 4090. We now report the isolation and structural elucidation of the metabolite.

This mold was grown as a surface culture for 3 weeks at 24°C on malt extract medium. The extract soluble in acetone from culture filtrate was chromatographed on a column of silicic acid. Elution with benzene-acetone (2:1, v/v) gave a new metabolite. This metabolite (I) was obtained as colorless needles, mp 294–296°C, [α]_D+46° (AcOH). Its molecular formula, C_{19}H_{23}O_{2}N_{3}, was determined by elementary analysis and mass spectrometry [m/e: 325 (M+)]. This compound gave a purple color with Ehrlich’s reagent. I showed UV absorption at 223 (ε 36000), 283 (ε 81000) and 292 nm (ε 7100).

The spectrum is close to that of echinulin (II) which is a metabolite of this mold. This suggests the presence of a 2,3-substituted indole system in I. I showed IR absorption at 3380 cm^{-1} due to a secondary amine group and bands at 1670 and 1655 cm^{-1} due to carbonyl absorption of amide groups. Treatment of I with 6N hydrochloric acid afforded alanine and tryptophan. This suggests the presence of a dioxopiperazine ring system in I which is formed from tryptophan and alanine.

The NMR spectrum of I showed a doublet at δ 1.22 (3H, J=7 Hz) due to the alanyl methyl protons which showed coupling with a proton at δ 3.80 (quartet, J=7 Hz). Two doublets of doublets at δ 3.00 (1H, J=10 and 15 Hz) and 3.28 (1H, J=5 and 15 Hz) were assigned to the allylic methylene protons which showed coupling with a proton at δ 4.02 (doublet of doublets, J=5 and 10 Hz). These protons at δ 3.80 and 4.02 were assigned to two hydrogen atoms on carbons adjacent to nitrogen atoms in dioxopiperazine ring system. Three signals at δ 7.13–7.53 (1H), 8.02 (1H), and 10.42 (1H) disappeared on treatment with deuterium oxide and were assigned to the protons of –NH– groups.

A signal at δ 1.48 (6H, singlet) was assigned to two olefinic methyl protons and two doublets of doublets at δ 4.93 (1H, J=2 and 10 Hz) and 4.98 (1H, J=2 and 17 Hz) were assigned to the olefinic protons of a vinyl group. These protons showed coupling with a proton at δ 6.12 (1H, J=10 and 17 Hz). Hydrogenation of I in methanol over palladium-charcoal gave a dihydro-derivative (III), in whose NMR spectrum the olefinic protons of the vinyl group disappeared.

Signals at δ 6.74 (1H, doublet of doublets, J=1.5 and 6 Hz), 6.91 (1H, sextet, J=2, 6 and 10 Hz), and 7.20–7.55 (2H, multiplet) assignable to the aromatic protons were observed, while the spectrum showed no singlet signal assignable to a proton located at position 2 in the indole system. Therefore, location of the γ,γ'-dimethylallyl group in I is assigned at position 2 in the indole system.

This evidence proves that the metabolite is alanyl-2-(1,1-dimethylallyl)-tryptophan anhydride (I). This compound had been synthesized by Houghton and Saxton who isolated two diastereoisomers of L-alanyl-2-(1,1-dimethyl-
allyl)-tryptophan anhydride by chromatography on Kiesel gel G. One has mp 264-272°C, \([\alpha]_D^{22} +22.3^\circ\) (AcOH) and L-alanyl-L-‘tryptophanyl’ configuration. The other has mp 228-235°C, \([\alpha]_D^{22} -68^\circ\) (AcOH) and L-alanyl-D-‘tryptophanyl’ configuration. We therefore conclude that dextrorotatory metabolite has L,L-configuration.

Moreover, Allen has reported in the biosynthetic study of echinulin (II) using y,y-dimethylallyl pyrophosphate, L-alanyl-L-tryptophan anhydride, and cell free extracts from Aspergillus amstelodami that only single isoprene substitution occurred on the tryptophanyl moiety and the reaction product was probably I.3)

EXPERIMENTAL

Melting points are uncorrected. UV spectra were measured on a Hitachi 124 spectrometer. IR spectra were recorded on a Hitachi 215 spectrometer and 'H-NMR spectra on a Hitachi R-24 using tetramethylsilane as internal standard. Analysis of amino acid was carried out with a JEOL JLC-6AH amino acid analyzer. Column chromatography was carried out on silic AR CC-4 (Mallinckrodt, 200-325 mesh). TLC was performed silica layer GA (Nakarai Kagaku Yakuhin Co.). For the citation of NMR data the following abbreviations were used: s (singlet), d (doublet), dd (doublet of doublets), t (triplet), q (quartet) and m (multiplet).

Isolation of the metabolite

Aspergillus chevalieri (Mangin) Thom et Church IFO 4090 was grown as a surface culture for 3 weeks at 24°C on a malt extract medium. The culture filtrate (20 liters) was adjusted to pH 3 with 10% hydrochloric acid and stirred with activated charcoal. The adsorbed metabolites were eluted with acetone. The acetone solution was concentrated in vacuo to give a brown residue. The residue was adsorbed on a small amount of silic AR CC-4 and applied to the top of a column of silic AR CC-4. After elution of oil with benzene, elution with benzene-acetone (2:1, v/v) gave 150 mg of crude white solid. The solid was recrystallized from methanol to give colorless needles of the metabolite (I), mp 294-296°C, \([\alpha]_D^{24} +46^\circ\) (AcOH).

UV \(\lambda_{max}\) nm (ε): 223 (36,000), 283 (8100), 292 (7100); IR \(\nu_{max}\) cm\(^{-1}\): 3380, 1670, 1655; NMR (DMSO-\(d_6\), 60 MHz) \(\delta\): 1.22 (3H, d, J=7 Hz), 1.48 (6H, s), 3.00 (1H, dd, J=10 and 15 Hz), 3.28 (1H, dd, J=5 and 15 Hz), 3.80 (1H, q, J=7 Hz), 4.02 (1H, dd, J=5 and 10 Hz), 4.93 (1H, dd, J=2 and 10 Hz), 4.98 (1H, dd, J=2 and 17 Hz), 6.12 (1H, dd, J=10 and 15 Hz), 6.74 (1H, dd, J=1.5 and 6 Hz), 6.91 (1H, sextet, J=2, 6 and 10 Hz), 7.13-7.55 (3H, m), 8.02 (1H, s), 10.42 (1H, s); MS m/e (% ler. Int.): M+ 325 (8), 198 (100), 183 (22), 168 (10), 154 (3), 143 (2), 130 (4), 69 (3); Anal. Found: C, 69.85; H, 7.16; N, 12.89; Calcd. for C\(_{19}\)H\(_{23}\)O\(_2\)N\(_3\): C, 70.13; H, 7.12; N, 12.91 %; M.W., 325.

This compound is soluble in methanol, glacial acetic acid, and concentrated hydrochloric acid, slightly soluble in ethyl acetate and insoluble in benzene and chloroform. It gave a purple color with Ehrlich’s reagent.

Hydrogenation of the metabolite

A solution of 39 mg of the metabolite in 30 ml of methanol was stirred for 1.5 hr over hydrogen atmosphere over palladium-charcoal (5 mg). The catalyst was filtered off and the filtrate was concentrated in vacuo. The residue was chromatographed on a column of silic AR CC-4. Elution with benzene-acetone (4:1, v/v) gave 26 mg of dihydro-derivative (II). The dihydro-derivative was recrystallized from acetone to give colorless needles, mp 284-285°C; NMR (DMSO-\(d_6\), 60 MHz) \(\delta\): 0.70 (3H, t, J=8 Hz), 1.25 (3H, d, J=7 Hz), 1.40 (6H, s), 1.72 (2H, q, J=8 Hz), 3.05 (1H, dd, J=10 and 15 Hz), 3.32 (1H, dd, J=5 and 15 Hz), 3.79 (1H, q, J=7 Hz), 3.95 (1H, dd, J=5 and 10 Hz), 6.80 (1H, dd, J=1.5 and 6 Hz), 6.91 (1H, sextet, J=2, 6 and 10 Hz), 7.15-7.55 (3H, m), 8.10 (1H, s); Anal. Found: C, 69.36; H, 7.49; N, 12.62; Calcd. for C\(_{19}\)H\(_{25}\)O\(_2\)N\(_3\): C, 69.70; H, 7.70; N, 12.84 %.

Hydrolysis of the metabolite

A solution of 15 mg of the metabolite in 10 ml of 6 N
hydrochloric acid was stirred for 2 hr at 130°C. The solution was concentrated in vacuo to give a yellow viscous residue. The residue was analyzed on amino acid analyzer. Two peaks were detected and identified as those of alanine and tryptophan by comparison with authentic L-alanine and L-tryptophan.

Acknowledgement. We wish to thank Mr. K. Ito, Food Technological Institute of Tottori prefecture, for the analysis of amino acid.

REFERENCES
3) C. M. Allen, Jr., Biochemistry, 11, 2154 (1972).