Antimicrobial Activity of the Ornithine-containing Lipid Isolated from *Gluconobacter cerinus*

Yasutaka TAHARA, Yuzo YAMADA and Keiji KONDO

Laboratory of Applied Microbiology, Department of Agricultural Chemistry, Shizuoka University, Shizuoka 422, Japan

Received November 29, 1976

Ornithine-containing lipids have been found in a wide range of bacterial species. However, the physiological function of these lipids remains unclarified. In our previous works, the occurrence of three ornithine-containing lipids was found in the bacterial cells of *Gluconobacter cerinus*; one of the three lipids was identified as Nγ-3-hydroxypalmitoylornithine, to the fatty acid moiety of which 2-hydroxy fatty acid is linked by an ester linkage, and another, as 2-hydroxy fatty acid ester of Nγ-3-hydroxypalmitoylornithyllaurine. In a further examination to know the physiological function of the three lipids, we have found that all the three lipids have a capacity of inhibiting the cell growth of various species of microorganisms. This communication describes the antimicrobial effect of the major one of the three ornithine-containing lipids.

The major lipid, 2-hydroxy fatty acid ester of Nγ-3-hydroxypalmitoylornithine, was isolated from the lyophilized cells of *Gluconobacter cerinus* IFO 3267 by the method described previously. The lipid preparation, dissolved in a mixture of chloroform-methanol (2:1) and stored at -20°C until required, was used for the antimicrobial assay.

The antimicrobial spectrum of the lipid is shown in Table I. The ornithine-containing lipid has a broad spectrum of antibacterial effect on a number of gram-negative and gram-positive bacteria. Especially, the growth of *Alcaligenes faecalis*, *Bacillus subtilis*, *Escherichia coli* and *Pseudomonas aeruginosa* was intensely inhibited at the concentration used. In addition, this lipid showed a growth-inhibitory effect on a variety of yeasts and fungi such as *Candida albicans*, *Cryptococcus neoformans*, *Saccharomyces cerevisiae* and *Aspergillus niger*. The effect of the lipid on the bacterial species were examined with a synthetic liquid medium (Fig. 1). The cell growth of *E. coli* and *P. aeruginosa* was completely inhibited at the concentration of 360 and 480...
FIG. 1. Effect of the Ornithine-containing Lipid on the Bacterial Growth.

The bacterial cells of E. coli IAM 1264 (A) and P. aeruginosa IFO 3445 (B) were grown with shaking at 30°C in 5 ml of a synthetic medium containing glucose 1%, KH₂PO₄ 0.1%, (NH₄)₂SO₄ 0.1%, NaCl 0.5% and MgSO₄·7H₂O 0.04% (pH 7.0). The ornithine-containing lipid was added to the medium, when the bacterial cells were inoculated. ○, no lipid; ●, 240 µg/ml; △, 360 µg/ml; ▲, 480 µg/ml. Above the concentration, all the bacterial cells were killed in the incubation.

The transmethylation of this lipid with 0.5 N sodium methoxide in methanol solution gave two compounds, a decylated lipid and a methyl ester of fatty acid. The decylated lipid, N₃-3-hydroxypalmitoylornithine, was also found to possess an inhibitory activity and its antimicrobial spectrum was almost identical with that of the native compound.

It has been known that a chemically synthesized amino-lipid, N-lauroyl-L-valine, inhibits the growth of plant pathogenic fungi such as Rhizoctonia solani and Pyricularia oryzae. Siolipin A, a lysine-containing lipid from Streptomyces sioyaensis, was reported to have a similar effect on the growth of Bacillus subtilis, but no inhibition was observed in other bacteria. To our best knowledge, there are no reports concerning such a growth-inhibitory effect in the ornithine-containing lipids of other bacteria. Therefore, our interest lies in the study on relationship between the antimicrobial activity and the structure of these ornithine-containing lipids, and it is now in progress.

The detailed description of this work will be presented later.

Acknowledgement. We express our thanks to Messrs. F. Ishikawa, K. Suzuki and K. Shinmoto for their technical assistance. We are also indebted to Dr. M. Isono, the Takeda Research Laboratories, Osaka, and Dr. Y. Ohta, the Central Research Laboratories, Ajinomoto Co., Kawasaki, for their kind supply of type cultures.

REFERENCES