Occurrence of Bacteriochlorophyll a in a Strain of an Aerobic Heterotrophic Bacterium

Keiji Harashima, Tsuneo Shiba,*, Tetsuya Totsuka, Usio Simidu*, and Nobuo Taga*

Department of Agricultural Chemistry and *Ocean Research Institute, The University of Tokyo, Bunkyo-ku and *Nakano-ku, Tokyo
Received May 16, 1978

A strain of a Gram-negative heterotrophic bacterium was isolated from a surface of a thallus of a green seaweed, Enteromorpha lynza, collected from Aburatsubo Inlet, Kanagawa Prefecture, in April, 1975. This bacterium, tentatively called OCh 101, grew only under aerobic conditions and produced water-insoluble orange pigments. These and following characteristics, details of which will be reported elsewhere, indicate the resemblance of OCh 101 to some species of genus Flavobacterium: non-motile rod, 0.7×1.5~2.5 μm; no acid formation from glucose and galactose; no spreading growth on agar plate media; halophilic; oxidase positive; catalase positive. Thin-layer chromatography of the water-insoluble pigments revealed the presence of a blue pigment showing a maximum absorption in the near infrared region. This report concerns the identification of this pigment.

OCh 101 was grown on the liquid PPES-II medium1) (1.5 liter in a 5 liter Erlenmeyer flask) under rotatory shaking (160 rpm) for 3 days at 27°C. About 15 g of packed cells harvested by centrifugation at 9000 × g (10min) was extracted successively twice with each 45 ml of aqueous 90% acetone and twice with each 45 ml of acetone, so that the bulk of carotenoids was washed out. The blue pigment and polar carotenoids remaining unextracted were extracted finally from the residue with 45 ml of methanol. Shaking of the methanolic solution with 45 ml of diethyl ether and 53 ml of distilled water resulted in transference of the blue pigment to the ethereal layer. Thorough washing of the ethereal layer with aqueous saturated solution of sodium chloride followed by dilution to 136 ml gave a solution showing the visible absorption spectrum illustrated in Fig. 1 (A) and similar to that of bacteriochlorophyll a. The ratio of bacteriochlorophyll a to pheophytin was calculated to be higher than 99 by the method of van der Rest and Gingras.2) Treatment of this solution with hydrochloric acid afforded a solution showing an absorption spectrum of bacteriopheophytin a (Fig. 1, B). Purification of the crude preparation according to Sato and Murata3) gave a pheophytin-free preparation giving a positive phase test. Tests by thin-layer chromatography,4) as illustrated in Fig. 2, substantiated the identity of the blue pigment with the authentic bacteriochlorophyll a isolated from cells of Chromatium vinosum.

Now it is evident that the blue pigment of OCh 101 is bacteriochlorophyll a which has been found only in photosynthetic bacteria. Therefore careful experiments should be undertaken concerning a possible utilization of light
FIG. 2. Thin-layer Chromatograms of the Blue Pigment.
B: Hyflosuper Cel-Wakogel B-0-CaCO₃-Ca(OH)₂-ascorbate (12: 3: 3: 0.02: 0.02) petroleum ether-isopropanol (95: 5).

1: The blue pigment from OCh 101, 2: Bacteriochlorophyll a from Chromatium vinosum. Beside the main blue spots, pink spots of bacteriopeophytin a and yellow-green spots of oxidized products were observed.

Acknowledgement. The authors wish to express cordial thanks to Dr. N. Murata and Mr. N. Sato, Department of Biophysics and Biochemistry, The University of Tokyo, for their kind and helpful advices for the preparation of bacteriochlorophyll a and generous gift of the culture of Chromatium vinosum.

REFERENCES


that in the cells growing in the light (300~600 lux) was 0.6 nmol. These values are considerably higher than those reported for 
Rhodopseudomonas spheroides grown in the dark aerobically. However, since this 
bacterium did not grow under anaerobic conditions so far examined even under illumina-
tion of white light, obviously it does not belong to photosynthetic bacteria in the 
ordinary meaning. While the amount of bacteriochlorophyll a* contained in 5 mg of 
wet packed cells (corresponding to about 1 mg of dry weight) of an early stationary phase 
growing at 25°C in the dark was 0.8~0.9 nmol,

* Amounts of bacteriochlorophyll a were calculated from light absorbancies at 770 nm on the bases of the values of millimolar extinction coefficients: 65.3 in acetone-methanol (7: 2) and 42.0 in methanol.