Short Communication

Total Synthesis of (+)- and (−)-Coronafacic Acid

Mitsuru Nakayama and Susumu Ohira

Department of Chemistry, Faculty of Science, Hiroshima University, Higashisenda-machi, Naka-ku, Hiroshima 730, Japan

Received February 15, 1983

Coronatine (1), a phytotoxin produced by Pseudomonas coronafaciens var. atropurpurea, induces chlorosis on the leaves of Italian ryegrass and also expands potato cells at a low concentration.1 The structure and the absolute configuration of 1 have been determined by Ichihara et al.,2 and the partial synthesis of 1 was achieved from natural coronafacic acid (+)-(2) and coronamic acid (+)-(3), which was obtained by synthesis and optical resolution.2b) More recently, many different syntheses of (±)-2 have been reported by several groups3; however, there has been no approach to optically-active coronafacic acid. In this communication, we describe the synthesis of (+)- and (−)-2 via the chromatographic resolution of the l-menthyl ester derivative, which was prepared as a synthetic intermediate by the modification of our previous work.3c)

In our synthesis of racemic 2,3c) the C₆-ethyl group had been introduced by alkylation of a tricyclo[4.3.0.0¹5]nonane derivative, producing a significant amount of the dialkylation by-product. To circumvent the trouble in this investigation, l-menthyl 3-oxohexanoate (4) ([α]D 20° = −63.5° (c = 0.85, CHCl₃); MS m/z: 268 (M⁺)) was prepared by the reaction of the dianion of l-menthyl acetoacetate4) and ethyl
bromide in an 88% yield. Deprotonation of 4 with sodium hydride and n-butyl lithium, followed by treatment with 1-cyclopentenylmethyl p-toluenesulfonate (5), afforded a 75% yield of a β-keto ester (6) (MS m/z: 348 (M⁺); IR ν\text{CHCl₃} cm⁻¹: 1735, 1710, 1645, 1305; NMR δ\text{MeSi} ppm: 3.27 (2H, s), 4.67 (1H, m), 5.35 (1H, bs)). Diazotization of 6 and subsequent intramolecular carbenoid addition gave a mixture of the desired diastereomers (7), in which the C₆-ethyl group is trans to the C₃α-proton, and their isomers (8) in a 56% yield. Treatment of these with sodium methoxide in refluxing methanol caused the epimerization of 8 to give only 7 as a 1:1 diastereomeric mixture, which was resolved cleanly by chromatography on silica gel (EtOAc–hexane) and recrystallization (methanol).

The more polar diastereomer of 7 (mp 70 ~ 71°C; [α]D²⁰ -86.7° (c=4.65, CHCl₃); MS m/z: 346 (M⁺); IR ν\text{CHCl₃} cm⁻¹: 1740, 1720, 1220) was reduced with zinc borohydride to give a 90% yield of a hydroxy ester (9) ([α]D²⁰ -67.5° (c=1.53, CHCl₃); MS m/z: 330 (M⁺ - 18); IR ν\text{CHCl₃} cm⁻¹: 3600, 1710, 1225; NMR δ\text{MeSi} ppm: 4.05 (1H, d, J=6.5)). To ensure the hydrolysis in the last step, 9 was converted into a methyl ester (10) ([α]D²⁰ -43.5° (c=1.82, CHCl₃); MS m/z: 224 (M⁺)) in an 88% yield by hydrolysis with refluxing aqueous sodium hydroxide in DMSO, followed by esterification with diazomethane. Treatment of 10 with p-toluenesulfonyl chloride in pyridine gave an unsoluble mixture (1:1:1; gc analysis) of α,β-unsaturated esters (11). The mixture was directly subjected to hydroboration and subsequent oxidation with pyridinium chlorochromate to give a complex mixture, from which a keto ester (12) ([α]D²⁰ +83.7° (c=1.99, CHCl₃); MS m/z: 222 (M⁺)) was obtained in an 8% yield from 10 by preparative TLC. Hydrolysis of 12 with aqueous hydrochloric acid gave (+)-2 (mp 142 ~ 143°C; [α]D²⁰ +109° (c=0.75, MeOH), lit.¹ mp 125 ~ 126°C; [α]D²⁰ +119.1°, natural sample² mp 142 ~ 143°C; mmp 142 ~ 143°C), whose spectral and analytical data, as well as the sign of the optical rotation, were identical with those of the natural product. Similarly, (-)-2 (mp 142 ~ 143°C; [α]D²⁰ -119° (c=0.86, MeOH)) was obtained from the less polar diastereomer of 7 (mp 100 ~ 101.5°C; [α]D²⁰ + 5.4° (c=3.68, CHCl₃)); thus the absolute configurations of 7 became clear, namely the more polar one must have the structure (7a) and the less polar one (7b).

As the result, the formal total synthesis of optically-active coronatine was completed.

Acknowledgment. The authors are grateful to Dr. A. Ichihara for kindly providing us with an authentic sample and spectral data of natural coronafacic acid and its methyl ester.

REFERENCES

*¹ Hydrolysis of 7 or the l-methyl ester of 2 was unsuccessful under several conditions tried.
*² The characteristics of natural coronafacic acid were measured in this laboratory.