Short Communication

New Terpenoids, Ganolucidic Acid D, Ganoderic Acid L, Lucidone C and Lucidenic Acid G, from the Fungus Ganoderma lucidum

Tsuyoshi Nishitoba, Hiroji Sato and Sadao Sakamura

Department of Agricultural Chemistry, Faculty of Agriculture, Hokkaido University, Sapporo 060, Japan

Received November 18, 1985

The fruiting body of the fungus Ganoderma lucidum (Reishi) has attracted much attention as a folk medicine, and some of its components have been elucidated. We have also reported several bitter terpenoids and related compounds from the fungus.1~9) The naming of lucidenic acids is a little confused, so we now designate our lucidenic acids D and E2) as Dx and El5 and Kikuchi’s7) as D2 and E2, respectively. Recently, we have isolated four new terpenoids, ganolucidic acid D (1), methyl ganoderate L (2a), lucidone C (3) and methyl lucidenate G (4a). Ganolucidic acid D (1) has an allylic alcohol group in the side chain and can be a possible biogenetic intermediate between the mycelial components10) and terpenoids of the fruiting body. On the other hand, ganoderic acid L (2), which has a hydroxyl group at C-20, can be a possible precursor of lucidone C (3). Among the lucidenic acids, lucidenic acid G (4) is unique in having a hydroxyl group at C-26.

The isolation procedure was the same as that described in our previous papers,1,3) and the acidic part obtained was separated into thirteen fractions (Fr. 1~13). Fr. 12 was subjected to Lobar column (RP-8, Merck) chromatography and the second fraction was treated with diazomethane. The resulting product was rechromatographed on silica gel and the Lobar (RP-8) column to give methyl ganoderate L (2a), lucidone C (3) and methyl lucidenate G (4a). The fourth fraction in the chromatography of Fr. 12 was purified on a silica gel column, PTLC and HPLC to give ganolucidic acid D (1).

Ganolucidic acid D (1), crystalline solids, C30H44O6 (M+ 500.3135). [α]D 23° +192° (c = 0.1, EtOH). UV λmax nm (ε): 257 (7800). IR νmax cm⁻¹: 3400, 1700, 1640. 1 was treated with diazomethane to yield a monomethyl ester 1a, C31H46O6 (M+ 514.3304). The 1H-NMR data of 1a were δDDS: 7.17 (1H, dq, J = 8.8 and 1.5Hz), 4.95 (1H, overlapped), 4.62 (1H, ddd, J = 8.8, 5.9 and 5.4Hz), 2.01 (3H, d, J = 1.5Hz), 1.47 (3H, s), 1.26 (3H, s), 1.13 (3H, s), 1.12 (3H, s), 1.09 (3H, d, J = 6.8Hz), 0.95 (3H, s). The 13C-NMR data of 1a were δDDS (number of bonded H): 217.1 (0),
198.3 (0), 168.6 (0), 165.5 (0), 146.2 (1), 138.2 (0), 127.3 (0), 72.0 (1), 66.7 (1). These data indicate that \(\text{Ia} \) was different from methyl ganolucidic acid A\(^{10} \) in the side chain moiety, having a double bond between C-24 and C-25, and a hydroxyl group at C-23. In the \(^1\)H-NMR spectrum of \(\text{Ia} \), the signal due to H-24 resonated at \(\delta 6.59 \) in CDCl\(_3\), which resembles those of tiglic acid\(^{11} \) and ganoderic acids U\(^{-2},10 \) so the configuration of the double bond between C-24 and C-25 was assigned as E. From these observations, the structure of ganolucidic acid D was concluded to be 15\(\alpha \),23-dihydroxy-3,11-dioxo-5\(\alpha \)-lanosta-8,24\(\beta \)-dien-26-oic acid (1).

Methyl ganoderate L (2a), colorless prisms, mp 228~230°C. [\(\alpha \]_D\(^{+} \)=+66° (c=0.2, MeOH). UV \(\lambda_{\text{max}} \)nm (e): 256 (6750). IR \(\nu_{\text{max}} \)cm\(^{-1} \): 3430, 1720, 1655. \(^1\)H-NMR \(\delta_{\text{TMS}} \): 5.46 (1H, dd, J=9.2 and 7.3 Hz), 5.0 (1H, overlapped), 3.52 (1H, dd, J=10.6 and 5.1 Hz), 1.64 (3H, s), 1.59 (3H, s), 1.57 (3H, s), 1.54 (3H, s), 1.29 (3H, s), 1.15 (3H, d, J=6.6 Hz), 1.11 (3H, s). The \(^1\)C-NMR data showed the presence of thirty-one carbon atoms and the principal signals were 125\(\text{C} \): 209.4 (0), 176.2 (0), 160.3 (0), 141.7 (0), 176.2 (0), 160.3 (0), 141.7 (0), 77.6 (1), 73.8 (0), 72.4 (1), 69.5 (1). By comparing these data to those of methyl ganoderate D\(^2,7 \) and I\(^3 \) the structure depicted as 2a was deduced for methyl ganoderate L. The FD-MS data of 2a were \(m/\text{z} \) (\%): 548 (M\(^{+} \), 5.3), 404 (100), 144 (33.4). The very weak intensity of the molecular ion peak is attributable to the McLafferty rearrangement and subsequent easy cleavage between C-20 and C-22. The EI-MS of 2a did not give the molecular ion peak, but its fragmentation pattern was in good agreement with that of lucidine C (3). Thus, the structure of methyl ganoderate L was established to be methyl 3\(\beta \),7\(\beta \),15\(\alpha \)-trihydroxy-4\(\beta \)-hydroxymethyl-4\(\beta \)-dimethyl-3,11-dioxo-5\(\alpha \)-chol-8-ene-24-oate (2a).

Lucidine C (3), colorless syrup, C\(_{24}\)H\(_{36}\)O\(_5\) (M\(^{+} \)=490.2905). [\(\alpha \]_D\(^{+} \)=+145° (c=0.2, MeOH). UV \(\lambda_{\text{max}} \)nm (e): 255 (7680). IR \(\nu_{\text{max}} \)cm\(^{-1} \): 3500 (sh), 3430, 1700, 1660. \(^1\)H-NMR \(\delta_{\text{TMS}} \): 5.34 (1H, dd, J=9.5 and 7.3 Hz), 4.98 (1H, dd, J=9.9 and 7.3 Hz), 3.51 (1H, dd, J=10.8 and 5.3 Hz), 2.11 (3H, s), 1.59 (3H, s), 1.51 (3H, s), 1.29 (3H, s), 1.11 (3H, s), 1.07 (3H, s). \(^1\)C-NMR \(\delta_{\text{TMS}} \): 207.6 (0), 198.9 (0), 159.9 (0), 141.9 (0), 77.5 (1), 72.4 (1), 69.4 (1). These data are very similar to those of lucidone A\(^2 \) but the presence of a 15\(\alpha \)-hydroxyl group is indicated. So the structure of lucidone C was assigned as 3\(\beta \),7\(\beta \),15\(\alpha \)-trihydroxy-4,4,14\(\alpha \)-trimethyl-11,20-dioxo-5\(\alpha \)-pregn-8-en (3).

Methyl lucidenate G (4), colorless syrup, C\(_{28}\)H\(_{42}\)O\(_7\) (M\(^{+} \)=532.3392), [\(\alpha \]_D\(^{+} \)=+127° (c=0.2, MeOH). UV \(\lambda_{\text{max}} \)nm (e): 254 (8040). IR \(\nu_{\text{max}} \)cm\(^{-1} \): 3400, 1730 (sh), 1700, 1660. \(^1\)H-NMR \(\delta_{\text{TMS}} \): 5.24 (1H, dd, J=9.8 and 7.1 Hz), 4.99 (1H, dd, J=9.9 and 7.3 Hz), 4.37 (1H, d, J=11.0 Hz), 1.72 (3H, s), 1.52 (3H, s), 1.51 (3H, s), 1.07 (3H, s), 0.81 (3H, d, J=5.9 Hz). \(^1\)C-NMR \(\delta_{\text{TMS}} \): 214.4 (0), 199.8 (0), 174.1 (0), 161.3 (0), 140.6 (0), 72.2 (1), 69.2 (1), 65.1 (2). These data indicate that methyl lucidenate G had the structure depicted as 4a. The presence of a hydroxyl group at C-26 was confirmed by converting 4a into 4b, C\(_{31}\)H\(_{48}\)O\(_7\) (M\(^{+} \)=532.3392), by treating with NaBH\(_4\) and following by CuSO\(_4\)/acetone. Thus, the structure of methyl lucidenate G was determined to be methyl 3\(\beta \),15\(\alpha \)-dihydroxy-4\(\beta \)-hydroxymethyl-4\(\alpha \),14\(\alpha \)-dimethyl-3,11-dioxo-5\(\alpha \)-chol-8-ene-24-oate (4a).

Acknowledgment. We are thankful to Mr. Atsuhiro Honda of Nihon Joyaku Co., Ltd. for supplying the material.

REFERENCES

New Terpenoids from the Fungus *G. lucidum*

