Accumulation of Gibberellin A₄ and the Metabolism of Gibberellin A₉ to Gibberellin A₁ in a *Phaeosphaeria* sp. L487 Culture

Hiroshi KAWAIDE and Takeshi SASSA

Department of Bioproduction, Faculty of Agriculture, Yamagata University, Tsuruoka, Yamagata 997, Japan

Received February 15, 1993

Gibberellin A₄ (GA₄), which was identified as the major GA from the GA-producing fungus *Phaeosphaeria* sp. L487, was accumulated in the culture with a maltose-yeast extract medium, its amount in the culture filtrate being about 50 mg per liter after a 3-week culture. The new fungal biosynthetic pathway to GA₁ from GA₉ via GA₄ was elucidated by feeding experiments with synthetic [17⁻²H₂]GA₉ and [17⁻²H₂]GA₄.

In a continuing study on the production and metabolism of gibberellins (GAs) in a culture of the GA-producing fungus, *Phaeosphaeria* sp. L487, GA₉ (Fig. 1, 1) and GA₄ (2) were isolated from its culture filtrate,¹ and the metabolic conversion of GA₉ to GA₄ was demonstrated by feeding experiments with synthetic [17⁻²H₂]GA₉ (1)² This 3β-hydroxylation is a very important step, as well as that of GA₂₉ to GA₁, in plant GA biosyntheses because it affords physiologically active GA₄ and GA₁ (3).³ These biosynthetic pathways, however, have not been found in other GA-producing fungi, i.e., *Gibberella fujikuroi* and *Sphaeceloma manihoticola*⁴; in their GA biosynthetic pathways, 3β-hydroxylation occurs in the step from the GA₁₂-aldehyde to GA₄α-aldehyde. Our continuing study on the mass production of GAs by *Phaeosphaeria* sp. L487 showed a marked accumulation of a polar GA in a maltose-yeast extract medium. In this paper, we describe the identification and accumulation of GA₁ as the major GA in this culture, and the biosynthetic relationship among GA₉, GA₄, and GA₁ in this fungus by feeding experiments.

The fungus was cultivated in a seed medium composed of 4% maltose and 0.5% Pharmamedia in shake flasks that were reciprocally shaken for 6 days at 25–26°C. Well-grown mycelia were inoculated to 500-ml shake flasks containing each 100 ml of a GA-production medium (5% maltose, 0.4% yeast extract, 0.1% NH₄NO₃, 0.5% KH₂PO₄ and 0.1% MgSO₄·7H₂O) and the flasks were incubated on a reciprocal shaker for 15 days at 25–26°C. The culture filtrate (1.6 liter, pH 4.8) was extracted with ethyl acetate at pH 2.0. The NaHCO₃ (aqueous)-soluble acidic fraction obtained from the ethyl acetate extract was subjected to column chromatography [CQ-3 silica gel, 4:1 benzene/

acetone containing 0.2% acetic acid] to give a polar GA fraction (fractions 16–27, 44.5 mg); the GA fraction was determined by the elongation activity toward hypocotyls of Chinese cabbage seedlings.³ The GA was successively purified by preparative silica gel TLC [1:2 benzene/aceton containing 0.2% acetic acid] to afford colorless prisms having mp 255–257°C (acetone/hexane, decom.) and [x]D +36.9⁰ (c = 0.21 in EtOH). By treating with ethereal diazomethane, its methyl ester was obtained as colorless prisms [mp 235–236°C (acetone/hexane)]. EIMS m/z (%): 362 (M⁺, 32), 344 (14), 330 (100), 316 (4), 312 (18), 303 (43), and 302 (31). HR-EIMS m/z: 362.1716 (C₂₀H₂₀O₆), calc. as 362.1731.¹ H-NMR (400 MHz, CDCl₃) δ: 1.15 (s, 18-H₃), 1.27 (s, 15-H₃), 2.69 and 3.21 (ABq, J = 10.2 Hz, 6-H and 5-H), 3.72 (s, -OCH₃), 3.85 (m, 3-H), and 4.96 and 5.25 (each m, 17-H₂). From these data, the polar GA was unequivocally identified as GA₁.

This fungus produced GA₁ as the end product of its GA biosynthesis in the maltose-yeast extract medium (Fig. 2). A 3-week culture gave ca. 50 mg of GA₁ from one liter of the culture filtrate. While no GA₃ was detected by HPLC analysis, a considerable amount of GA₄ (12 mg/liter) was detected after 8 days, which then decreased rapidly to less than 1.5 mg/liter. On the other hand, GA₂₉ was scarcely detected throughout the whole course of cultivation.

Fungal GA₁ can be biosynthesized from GA₁₄ via GA₄ in *G. fujikuroi*. Thus, we examined the incorporation of [17⁻²H₂]GA₉ into GA₁ and GA₄, and of [17⁻²H₂]GA₄ (2) into GA₁ in order to determine the biosynthetic pathway to GA₁ in *Phaeosphaeria* sp. L487. The preparation of [17⁻²H₂]GA₉ from commercial GA₁₄ was described in a previous paper.⁵ For the feeding experiments, the fungus was cultured in a similar manner to that already described. When GAs (GA₁, 0.09 mg; GA₄, 0.24 mg; and GA₉, 0.14 mg; all in 100 ml) were detected in the culture filtrate at 5 days after inoculation, 25 ml of the culture containing mycelia was transferred to a 100-ml shake flask. Immediately, [17⁻²H₂]GA₉ (0.2 mg in 20 µl of EtOH) was added to the culture, and incubation was continued for another 3 days. The preparation of a strongly acidic fraction con-

Fig. 1. Structures of Gibberellins and Their Derivatives.
taining GAs from the culture filtrate was done in a similar manner to that already described. From this acidic fraction (4.8 mg), GA₁- and GA₄-like compounds were separated by preparative TLC [1:1 benzene/acetone containing 0.2% acetic acid]. The GA₁-like compound (0.8 mg) was further purified by HPLC [Crestpak C8S, 15:85 CH₃CN/H₂O containing 0.2% acetic acid] and was then converted with ethereal diazomethane for an MS analysis. The GA₄-like compound (0.6 mg) was also purified by HPLC [Crestpak C18S, 35:60 CH₃CN/H₂O containing 0.2% acetic acid]. This GA₄-like compound and the methyl ester of the GA₁-like compound were determined by EIMS and HR-EIMS (Fig. 3). The MS data for the GA₄-like compound were quite similar to those obtained from the previous feeding experiments of [¹⁷²H₂]GA₄.21) The MS data for the methyl ester of the GA₁-like compound gave molecular and fragment ion peaks [m/z] 362 (M⁺), 344, 330, 316, and 312 originating from the methyl ester of natural GA₁ (4). Furthermore, the data showed the corresponding intense MS peaks [m/z] 364 (M⁺), 346, 332, 318, and 314) shifted by two mass units, indicating the presence of the [²H₃]GA₄ methyl ester ([²H₂]GA₁-Me, 4). These MS peaks of M⁺ and [M⁺−H₂O] were also confirmed by HR-EIMS: m/z 364.1836 (M⁺, C₂₀H₄₄[²H₂]O₆ calc. as 364.1856) and 346.1761 (M⁺−H₂O, C₂₀H₃₂[²H₂]O₅, 346.1750) for [²H₃]GA₁-Me: m/z 362.1757 (M⁺, C₂₀H₄₀O₆, 362.1731) and 344.1590 (M⁺−H₂O, C₂₀H₃₈O₅, 344.1625) for GA₁-Me. These observations suggested that GA₉ was metabolized to GA₄ via GA₄ in the fungus.

In order to confirm the metabolic conversion of GA₄ to GA₁, we prepared [¹⁷²H₂]GA₄ from the methyl ester of GA₄-17-norketone by a chemical transformation similar to that used in the preparation of [¹⁷²H₂]GA₉.2) The MS and ¹H-NMR data for the synthetic [¹⁷²H₂]GA₄ were as follows. EIMS m/z (%): 334 (M⁺, 2), 316 (17), 298 (9), 288 (24), and 272 (100). HR-EIMS m/z: 316.1649 (M⁺−H₂O, C₁₉H₂₀[²H₂]O₄ calc. as 316.1645). ¹H-NMR (400 MHz, acetone-d₆) δ: 1.11 (3H, s, 18-H₃), 2.60 and 3.21 (each 1H, ABq, J=11.0 Hz, 6-H and 5-H), and 3.72 (1H, m, 3-H) [signals of an exomethylene group at δ 4.97 and 4.84 (17-H₂) were not observed]. The feeding experiments with [¹⁷²H₂]GA₄ as a substrate were done in a similar manner to that used for [¹⁷²H₂]GA₉. The acidic substances extracted from the culture filtrate were separated by TLC and then purified by HPLC to give a GA₁-like compound. Its methyl ester obtained by methylation with diazomethane was determined by EIMS and HR-EIMS. The metabolic conversion of GA₄ to GA₁ was verified by the presence of the MS peaks of [²H₃]GA₁-Me: m/z 364.1862 (M⁺, 4, C₂₀H₄₀[²H₂]O₆ calc. as 364.1856), 346 (2), and 318 (4)) together with those of natural GA₁-Me: m/z 362.1746 (M⁺, 23, C₂₀H₃₈O₆ calc. as 362.1731), 344 (13), and 330 (100)).

These observations clearly indicate that GA₁ was converted from GA₉ via GA₄ in Phaeosphaeria sp. L487. This biosynthesis of GA₁ is a new pathway in fungi and is very interesting because the metabolism of GA₉ to GA₄ and of GA₄ to GA₁ is found in various higher plants.6) A large amount of GA₄ (ca. 50 mg/liter) was accumulated as

Fig. 2. Time-Course for Gibberellin (GA) Production in the Yeast Extract Medium by Phaeosphaeria sp. L487.

Each gibberellic amount in the culture filtrate in a 500-ml shake flask was determined by HPLC; GA₉ and GA₄ [Crestpak C18S, 35:60 CH₃CN/H₂O containing 0.2% acetic acid], and GA₁ [Crestpak C8S, 15:85 CH₃CN/H₂O containing 0.2% acetic acid]. Symbols: □, GA₁; ○, GA₄; ◀, GA₉.

Fig. 3. Partial EIMS Spectra of the Gibberellin A₄-like Compound and the Methyl Ester of the Gibberellin A₁-like Compound Obtained from the Culture Filtrate of Phaeosphaeria sp. L487 Fed with [¹⁷²H₂] Gibberellin A₉.

Symbol: ▼, deuterium-containing MS peaks.
the major GA in the culture of *Phaeosphaeria* sp. L487. In addition, GA$_3$ could not be detected in the culture filtrate by an HPLC analysis. These observations suggest that pure GA$_1$ for agricultural applications can be produced by this GA$_1$ fermentation.

Acknowledgments. We are grateful to Dr. T. Sugiyama of Tohoku University for measuring 400 MHz 1H-NMR data, and to Dr. T. Mikawa and Dr. N. Yoshikawa of Mitsubishi Kasei Ltd. for their encouragement during this work. We also thank Mr. K. Suzuki of Yamagata University for his collaboration in the preparation of [17-3H$_2$]GA$_3$.

References