Short Communication

Simple and Efficient Procedure for Removing the 34 kDa Allergenic Soybean Protein, Gly m I, from Defatted Soy Milk

Masahiko Samoto, Takeshi Akasaka, Hiroyuki Mori, Mariko Manabe, Tetuya Ookura, and Yukio Kawamura

Central Research Institute Fuji Oil Co., Ltd., Yawara-mura, Kinunondai 4-3, Ibaraki 300-24, Japan
* Protein Science Laboratory, National Food Research Institute, Kannondai 2-1-2, Tsukuba 305, Japan
Received July 19, 1994

The 34 kDa protein in the salted-out fraction of soy milk is shown to be identical to the allergenic soybean protein, Gly m I, by N-terminal amino acid sequencing and immunoblotting, using the monoclonal antibody against Gly m I. Treatment of soy milk with 1 M Na₂SO₄, acidifying to pH 4.5 and centrifugation removed more than 90% of the 34 kDa protein with an overall yield of 70% of total soy protein.

Cases of food allergy have recently shown a sharp increase. Ogawa et al. has found the allergenic soybean protein, Gly m I, to be readily recognized by IgE antibodies in the sera of soybean-sensitive patients with atopic dermatitis. This protein has been isolated from the crude 7S-globulin fraction in its oligomeric form with a molecular weight of exceeding 300,000 by gel-filtration and identified as a 34 kDa oil-body-associated protein (P34). It would thus appear to easily aggregate in defatted soy milk.

A spectroscopic examination of the protein particle-size distribution in defatted soy milk indicated a bimodal distribution; i.e., both large and small particles well dispersed in defatted soy milk. The large-particle fraction was rich in 34 kDa protein, considered possibly to be Gly m I, and the other oil-body-associated proteins were similar to ASF (acid-sensitive fraction), being insoluble at high ionic strength and pH 4.5. A simple and efficient procedure was thus developed by the authors to remove Gly m I from defatted soymilk to obtain a low allergenic soybean protein.

Defatted soybean meal was prepared from ground soybean IOM (Indiana, Ohio, Michigan; 1993 crop) by solvent extraction with n-hexane. Defatted soy milk was prepared by dispersing the meal in distilled water (1:15, w/w), whose pH was adjusted to 7.5 with 1 N NaOH, and then by mixing at room temperature for 3 h. The mixture was centrifuged at 10,000 x g for 10 min to remove the insoluble material, the supernatant being used as defatted soy milk. SDS-polyacrylamide gel electrophoresis (SDS-PAGE) was conducted by using a 12% gel (Tefco Co., U.S.A.) and the Laemmli system. After Western blotting, the allergenic protein, Gly m I, was detected by using a monoclonal antibody specific to Gly m I (provided by Dr. Ogawa, University of Tokushima) and ECL immunodetection reagents (Amer sham, England). The particle-size distribution of the soy protein was determined by the ELS-800 laser light scattering system (Otsuka Electronics Co., Japan). The N-terminal amino acid sequence of the western-blotted protein on a PVDF membrane was determined with a gas-phase protein sequencer (477A, ABI, CA, U.S.A.). The percentage removal of Gly m I was calculated according to a densitometric determination of the ECL immunofluorescent intensity on X-ray film.

The analysis of particle-size distribution of the defatted soy milk by laser light scattering indicated an average particle-size peak of 10 nm and a 40 nm - 2 μm peak as shown in Fig. 1a. It would thus appear possible to separate the two different sizes of particles by ultracentrifugation. The particle-size distribution of the supernatant and reddissolved precipitates after ultracentrifugation (200,000 x g for 50 min) of the defatted soy milk indicates good resolution of the two peaks (Figs. 1b and c). The protein compositions of the two fractions were determined by SDS-PAGE as shown in Fig. 2.

The supernatant (10 nm particle size) consisted primarily of the major soybean storage proteins, 7S and 11S, and some 34 kDa protein, apparently the allergenic protein. The SDS-PAGE patterns of the precipitates were similar to those of the so-called acid-sensitive fraction (ASF), the acid-insoluble fraction high in ionic strength and rich in 34 kDa protein. An attempt was thus made to remove the 34 kDa protein by salting-out through changing the concentration of ammonium sulfate.

As shown in Fig. 3, the 34 kDa protein was effectively removed by 40% saturated ammonium sulfate precipitation without significant loss of the storage proteins. To confirm the 34 kDa band (lane 2 in Fig. 3) was identical to Gly m I, an allergenic protein, the N-terminal amino acid sequence of the 34 kDa protein electrophobted on a PVDF membrane was determined as shown in the Table. The 18 N-terminal amino acid sequence of the 34 kDa protein was identical to that of the Gly m I protein. Immunostaining of the gel indicated only the 34 kDa protein to be stained with anti-Gly m I (Fig. 4, lane 1). All these results indicate that the 34 kDa protein to be the allergenic protein, Gly m I, and that the 34 kDa allergenic protein can be removed by salting-out at acidic pH and then by conventional centrifugation.

With the present method, 0.3-1 M Na₂SO₄ at pH 4.5 and centrifuging at 10,000 x g for 10 min were the conditions found to provide optimal removal. Figure 4 shows the efficient removal of the 34 kDa allergenic protein by 0.3 M (lanes 2 and 3) and 1.0 M (lanes 4 and 5) Na₂SO₄, which is applied as a food additive. The 34 kDa protein from defatted soy milk could be removed by more than 80% (lane 2) and

1 To whom correspondence should be addressed.

Abbreviations: SDS, sodium dodecyl sulfate; PVDF, polyvinyliden fluoride.
Fig. 1. Particle-size Distribution of the Defatted Soy Milk and of the Two Fractions Separated by Ultracentrifugation.
Defatted soy milk was ultracentrifuged at 200,000 \(\times g \) for 50 min. The supernatant and precipitates were diluted with distilled water to a suitable concentration for the measurement of particle-size by light scattering.
*The percentage shows the ratio of protein in the supernatant and precipitates against the whole protein of defatted soy milk.

Fig. 2. SDS-PAGE Patterns of the Defatted Soy Milk and of the Two Fractions Separated by Ultracentrifugation.
Defatted soy milk with 1 M NaCl at pH 7.5 was ultracentrifuged at 200,000 \(\times g \) for 50 min. The protein (30 \(\mu \)g) from each fraction was applied to a 12% gel. a, whole defatted soy milk; b, supernatant of defatted soy milk; c, precipitates of defatted soy milk.
Removal of 34 kDa Allergenic Soybean Protein

Fig. 3. SDS-PAGE Patterns of Proteins Precipitated with Different Concentrations of Ammonium Sulfate from Large Particles of Defatted Soy Milk.

The large particle proteins in 100 ml of defatted soy milk were precipitated by ultracentrifugation. The proteins were then dissolved in a buffer with 10 mM 2-mercaptoethanol, before the solution was fractionated with ammonium sulfate at pH 7.5. Following dialysis of the precipitates, the fractions were applied to an SDS-PAGE column. Lanes 1, 2, 3, and 4 show the fractions precipitated by 0-30%, 30-40%, 40-50%, and 50-100% of saturated ammonium sulfate, respectively.

Table: Amino-terminal Sequence of the 34 kDa Protein

| 34 kDa protein | KKMKEQYSHPDATSWDWR |
| P34* (Gly m I) | KKMKEQYSHPDATSWDWR |

* P34, 34kDa oil-body-associated protein and deduced amino-terminal sequence of amino acids.

Fig. 4. SDS-PAGE and Immunoblotted Patterns of the Supernatant and Precipitate Separated by Centrifugation in 0.3 M or 1.0 M Na2SO4 at pH 4.5.

Soy milk (100 ml) was adjusted to pH 4.5 with 1 N HCl and then centrifuged at 10,000 × g for 10 min, after standing for 10 min at 25°C in Na2SO4 and 10 mM SBS (sodium bisulfitite). The supernatant and precipitate were dissolved in distilled water, and their volume was adjusted to that before separation. A sample solution (50 μl) was mixed with 450 μl of an SDS-PAGE sample buffer, and 5 μl of the mixture were applied to an SDS-PAGE column. Lane 1, whole soy milk; lanes 2 and 3, supernatant and precipitates of soy milk containing 0.3 M Na2SO4; lanes 4 and 5, supernatant and precipitates of soy milk containing 1.0 M Na2SO4, respectively.

There is no significant loss of the functional soybean proteins, 78 and 11S, and thus the present method should find a wide application to food manufacturing.

Acknowledgments. The authors are grateful to Professor T. Ogawa of the University of Tokushima and to Dr. Y. Morita for their valuable comments.

References