Bulletin of the Chemical Society of Japan
Online ISSN : 1348-0634
Print ISSN : 0009-2673
ISSN-L : 0009-2673
The Chemical Society of Japan Award for Creative Work for 2003
Theoretical Investigations of the Electronic and Nuclear Dynamics of Molecules in Intense Laser Fields: Quantum Mechanical Wave Packet Approaches
Hirohiko KonoYukio SatoManabu KannoKatsunori NakaiTsuyoshi Kato
Author information
JOURNALS FREE ACCESS

2006 Volume 79 Issue 2 Pages 196-227

Details
Abstract

We have developed a method for describing the reaction dynamics of a polyatomic molecule in intense laser fields. First, the dynamical behavior of H2+ and H2 in near-infrared, intense laser fields (I > 1013 W cm−2 and λ > 700 nm) was examined; accurate evaluation of the electronic and nuclear wave packet was achieved by the dual transformation method that we developed. Using “field-following” time-dependent adiabatic states defined as eigenfunctions of the “instantaneous” electronic Hamiltonian, we have clarified the dynamics of bound electrons, ionization processes, Coulomb explosion processes, and molecular vibrations of H2+ and H2. The analyses indicate that the multielectron dynamics and nuclear dynamics of polyatomic molecules in intense fields can be described by using the potential surfaces of time-dependent adiabatic states and the nonadiabatic coupling elements between those states. To obtain time-dependent adiabatic states of a molecule, one can diagonalize the electronic Hamiltonian including the interaction with the instantaneous laser electric field by ab initio molecular orbital (MO) methods. The time-dependent adiabatic potentials obtained are used to evaluate the multichannel nuclear dynamics until the next ionization process. We have applied the time-dependent adiabatic state approach to reveal the characteristic features of the dynamics of structural deformations of CO2 and its cations in a near-infrared intense laser field. The experimentally observed stretched and bent structure of CO23+ just before Coulomb explosions originates from the structural deformation of CO22+. We also revealed the mechanism of the experimentally observed bond dissociation of C2H5OH; we found that the relative probability of C–O bond cleavage to that of C–C bond cleavage becomes smaller with decreases in the pulse length. This example clearly shows that field-induced nonadiabatic transitions play a decisive role in the reaction dynamics of molecules in an intense laser field.

Information related to the author

This article cannot obtain the latest cited-by information.

© 2006 The Chemical Society of Japan
Previous article Next article
feedback
Top