Bulletin of the Chemical Society of Japan
Online ISSN : 1348-0634
Print ISSN : 0009-2673
ISSN-L : 0009-2673
Theoretical Study on the Excited Electronic States of Coronene and Its π-Extended Molecules Using the Symmetry-Adapted Cluster-Configuration Interaction Method
Ryoichi FukudaMasahiro Ehara
Author information

2013 Volume 86 Issue 4 Pages 445-451


The excited electronic states and optical absorption spectra of coronene (C24H12), hexa-peri-hexabenzocoronene (HBC) (C42H18), and circumcoronene (C54H18) were studied using the symmetry-adapted cluster-configuration interaction (SAC-CI) method. For coronene and HBC, the SAC-CI calculations reproduced the experimental spectra well and predicted optically forbidden excited states. For HBC, the symmetry lowering enhanced the intensity of the S2 state that corresponds to the p-band, and the SAC-CI calculation predicted the existence of the second and third optically allowed states around the β-band region near 4.0 eV. For circumcoronene, the SAC-CI calculation predicted a strong absorption of the β-band in the visible light region. The mechanisms of energy splitting for the HOMO–LUMO transition were investigated. Electron correlation was the most important factor for the energy splitting between the lowest and the next-lowest states. Configuration interaction with single excitations (CIS) calculations could not correctly predict the relative energies of these states in coronene and circumcoronene. For HBC, on the other hand, the CIS calculation provided the same energy order as the SAC-CI calculation.

Information related to the author

This article cannot obtain the latest cited-by information.

© 2013 The Chemical Society of Japan
Previous article Next article