Euclidean rings

Mitsuo Kanemitsu* and Ken-ichi Yoshida**

The purpose of this paper is to give the structure theorem for a Euclidean ring in which zero-divisors can appear.

In this paper, all rings are commutative with identity. We give the following definition:

DEFINITION. Given a ring R, a Euclidean algorithm in R is a map ϕ of R into a well-ordered set M such that

1. given $a, b \in R$, there exist q and r in R such that

 \[b = aq + r \quad \text{where} \quad r = a \quad \text{or} \quad \phi(r) < \phi(a) ; \]

2. $\phi(0) \leq \phi(a)$ for all $a \in R$.

We say that R is Euclidean if it admits an algorithm ϕ.

For an integral domain, the inequality "$\phi(ab) \geq \phi(a)$ for all $a, b \in R$" is also normally included in the definition. This inequality does not necessarily hold in general. For example, let $\phi: \mathbb{Z} \to \mathbb{N} \cup \{\infty\}$ be a Euclidean algorithm on \mathbb{Z} defined by $\phi(n) = 2n$ for $n > 0$, $\phi(n) = -2n - 1$ for $n < 0$ and $\phi(0) = \infty$. But if we put $\bar{\phi}(a) = \min \{\phi(ua)\}$, where u is taken over all units of R, then $\bar{\phi}$ is a Euclidean algorithm for R which does satisfy the inequality.

First we give the following result.

LEMMA 1. If a ring R is a Euclidean ring, then it is a principal ideal ring.

PROOF. If ϕ is a Euclidean algorithm on R, then, for each ideal A of R, define

\[\phi(a) = \min \{\phi(a)/a \in A\} . \]

For any $b \in A$, (2) of the above definition shows that

\[b = aq + r \quad \text{where} \quad r = a \quad \text{or} \quad \phi(r) < \phi(a) . \]

In the case of $r = a, b \in Ra$. Otherwise, since $\phi(r) < \phi(a)$, we have $r \in A$. This is contradict to the minimality. Therefore A is a principal ideal of R.

Received July 4, 1985.

* Department of Mathematics, Aichi University of Education, Igaya-cho, Kariya-shi, 448 Japan.

** Department of Applied Mathematics, Okayama University of Science, Ridai-cho, Okayama-shi, 700 Japan.
COROLLARY 2. If R is a Euclidean ring, then it is a Noetherian ring with Krull dimension one at most.

As the proof of the next proposition is immediate, we omit its proof.

PROPOSITION 3. If R is a Euclidean ring, then the homomorphic images of R are also Euclidean.

PROPOSITION 4. Let R be a Euclidean ring and S be a multiplicatively closed set of R. Then $S^{-1}R$ is a Euclidean ring.

PROOF. We can assume that S is a saturated multiplicatively closed set. So S is generated by prime elements $\{p_\lambda\}$. Let $\phi: R \rightarrow M$ be a Euclidean algorithm, $\bar{\phi}: M \rightarrow M$ be a map such that $\phi(p_\lambda) \in \text{min } M$ for all p_λ and $\bar{\phi}$ is their composition $\bar{\phi}\phi: R \rightarrow M$. We assume that ϕ is satisfying the condition $\phi(ab) \geq \phi(a)$ for $a \in R$. We can define $\bar{\psi}: S^{-1}R \rightarrow M$ by $\bar{\psi}$. Then $\bar{\psi}$ is a Euclidean algorithm on $S^{-1}R$. Therefore $S^{-1}R$ is Euclidean. q.e.d.

Next, we prove that there do not exist the embedded prime divisors of (0) in Euclidean rings.

PROPOSITION 5. R is a Euclidean ring, then there do not exist the embedded prime divisors of (0).

PROOF. Let $(0)=q_1 \cap \cdots \cap q_t \cap Q_1 \cap \cdots \cap Q_s$ be an irredundant primary decomposition of (0). Let the Q_j be embedded primary components and $P_i=\text{rad } (Q_i)$ be the radical ideal of Q_i for $i=1,\ldots, s$. Put $q_1 \cap \cdots \cap q_t=(a)$. We will prove that $(0): (a)\subset P_j$ for some P_j. We assume that $(0): (a)\subset P_i$ for $i=1,\ldots, s$. It is well known that there exists an element $y \in (0): (a)$ such that $y \notin P_1 \cap \cdots \cap P_s$. Since $ay=0$ and Q_i is primary, we have $a \in Q_i$ for $i=1,\ldots, s$. Hence $a \in q_1 \cap \cdots \cap q_t \cap Q_1 \cap \cdots \cap Q_s=(0)$. This is a contradiction. Therefore we can assume that $(0): (a)\subset P_1=P$. Let $P=(p)$. Since P is an embedded prime ideal of (0), we have $(a)\subset q_i \subset P=(p)$ for some q_i. Write $a=pa'$ for some $a' \in R$. Since $p \notin \text{rad } (q_i)$ for $i=1,\ldots, r$, we have $a' \in q_1 \cap \cdots \cap q_t=(a)$, hence $a'=x a$ for some $x \in R$. Hence $(1-px)a=0$, so $1-px \in (0): (a)\subset P$. Therefore $1 \in P$, this is a contradiction.

COROLLARY 6. If R is a Euclidean ring, then $R \cong R' \oplus A$ where R' is a Euclidean ring such that the irreducible components of $\text{Spec}(R')$ equal all dimension one and A is an Artinian Euclidean ring.

PROOF. Let $(0)=q_1 \cap q_2 \cap \cdots \cap q_t \cap Q_1 \cap \cdots \cap Q_s$ be an irredundant primary decomposition of (0), where the $\text{rad } (Q_i)$ $(i=1,\ldots, s)$ are maximal ideals and the $\text{rad } (q_j)$ $(j=1,\ldots, r)$ are not maximal ideals. Put $q=q_1 \cap \cdots \cap q_t$ and $Q=Q_1 \cap \cdots \cap Q_s$. Then we have
Euclidean rings

\[R \cong R/q \oplus R/Q \]

where \(R/q \) is an Artinian Euclidean ring and \(R/Q \) is a Euclidean ring such that each irreducible component of \(\text{Spec}(R/Q) \) has dimension 1. q.e.d.

To prove the structure theorem, we will prove the following proposition.

Proposition 7. If \(R \) is a Euclidean ring such that each irreducible component of \(\text{Spec}(R) \) is of dimension one, then

\[R \cong R_1 \oplus \cdots \oplus R_t \]

where all \(R_i \) are Euclidean domains.

Proof. First, we will prove that \(R \) is a reduced ring. Suppose \(\text{rad}(0) \neq (0) \). Then \(\text{rad}(0) = (a) \) for some non-zero element \(a \in R \). Put \(A = (0):(a) \). Since \(A \neq R \), there exists a non-zero maximal ideal \(m = (p) \) containing \(A \). Hence \((a, p) = (p) \). Therefore, we have \(a = pa_1 \) for \(a_1 \in R \). Since the irreducible components of \(\text{Spec}(R) \) are of dimension one, we have \(a_1 \in \text{rad}(0) = (a) \). Thus we have

\[a = pa_1 = p^2a_2 = \cdots = p^ta_1 \quad (a_2, \ldots, a_t \in R). \]

Therefore we have a sequence of ideals:

\[(a) \subset (a_1) \subset (a_2) \subset \cdots. \]

Since \(R \) is a Noetherian ring, we have \((a_n) = (a_{n+1}) \) for some integer \(n \). Hence \(a_{n+1} = a_n x \) for some \(x \in R \). Thus we have

\[a = p^{n+1}a_{n+1} = p^{n+1}a_n x = pxa, \quad \text{that is}, \quad a(1 - px) = 0. \]

Consequently, we have that

\[1 - px \in (0): (a) = A \subset m = (p). \]

Hence we have \(1 \in (p) \), this is a contradiction. We have proved that \(R \) is reduced.

Next, let \((0) = (p_1) \cap \cdots \cap (p_t) \) where each \((p_i) \) is a prime ideal. If \(t = 1 \), then \(R \) is an integral domain. So nothing to do. Now, let \(t \geq 2 \). We will prove the proposition using induction on \(t \). Put \(p = p_1 \) and \((p_2) \cap \cdots \cap (p_t) = (q) \). Then \((0) = (p) \cap (q) \). We will prove that \((p) + (q) = R \). Now, we assume that \((p) + (q) \neq R \). Put \(A = (p) + (q) \) and \(A = (a) \) for some element \(a \in R \). If \(a \) is a zero divisor, then \(a \in (p_i) \) for some \(i \) \((1 \leq i \leq t)\). Suppose \(a \in (p_1) \), then \(A \subset (p_1) \). And so \(q \in (p_1) \), this is a contradiction. Next, we assume that \(a \in (p_j) \) for \(2 \leq j \leq t \). Then we have \(p = p_1 \in (p_j) \). This is a contradiction. Hence we have proved that \(a \) is non-zero divisor. Since \(a = px + qy \) for some \(x, y \in R \), \(p = au \) for \(u \in R \) and \(q = av \) for \(v \in R \), we have that \(u \in (p) \), \(v \in (q) \) and \(a = px + qy = a(ux + vy) \). Hence \(1 \in (ux + vy) \). This is a contradiction. Thus we have proved that \((p) + (q) = R \). Therefore we have
\begin{align*}
R &= R/(p_1) \oplus R/(p_2) \cap \cdots \cap (p_i).
\end{align*}

Now, we see that $R = R_1 \oplus \cdots \oplus R_n$, where each R_i is a Euclidean domain, by the assumption of induction. This is complete the proof.

We summarize:

Theorem 8 (Structure theorem for Euclidean rings). Let R be a ring. Then R is a Euclidean ring if and only if
\begin{align*}
R &= R_1 \oplus \cdots \oplus R_n \oplus A_1 \oplus \cdots \oplus A_s,
\end{align*}
where each R_i is a Euclidean domain and each A_j is an Artinian local Euclidean ring.

Corollary 9. Let R be a ring and \hat{R} be the completion of R. Then R is a Euclidean ring if and only if \hat{R} is so.

Now, we will consider the case of Artinian local rings.

Proposition 10. Let R be an Artinian local ring with maximal ideal M and let $D = R/M$. Then R is Euclidean if and only if $R \cong D[X]/(X^s)$ for some integer s or $R \cong V[X]/(f(X), X^s)$ for $f(X) \not\in V[X]$, where V is a complete discrete valuation ring.

Proof. We can easily prove it by Proposition 3 and [2, Theorem 3.3].

We will study the relation between the Euclidean rings and the affine domains over a field.

Lemma 11 (P. Samuel or Cunnea [1]). Let k be an algebraically closed field, R be an affine domain over the field k and K be the quotient field of R. Then R is a principal ideal domain if and only if K is of genus zero.

Lemma 12. Let k be an algebraically closed field and R be an affine domain over k. Then the following assertions are equivalent:

1. R is a principal ideal domain.
2. $R \cong k[X][1/f(X)]$ where X is an indeterminate and $f(X)$ is a polynomial of $k[X]$.
3. R is a Euclidean ring.

Proof. The implications (2) \Rightarrow (3) \Rightarrow (1) are trivial. We will prove (1) \Rightarrow (2). By Lemma 11, the quotient field K of R is of genus zero. Since $k[X] \subset R \subset k(X)$, it is well known that $R = k[X, 1/f(X)]$.

Now, for a ring A, we denote the units of A by A^\ast.

Proposition 13. Let R be a Euclidean domain containing a field k with the
algorithm $\phi: R \to M$. Suppose that $R^* = k^*$ and $\phi(y + s) = \phi(y)$ for any $y \in R$ and any $s \in k$. Then there exists an element x of R such that $R = k[x]$.

Proof. We can assume that $\phi(ab) \geq \phi(a)$ for $a, b \in R$. It is easily proved that $R^* = \{a \in R/\phi(a) = \min M\}$. Put $\lambda = \min \{M - R^*\}$. Then $\lambda = \phi(x)$ for some $x \in R$. Since $k[x] \subset R$, we will prove $R \subset k[x]$. Let a be any element of R. We will prove that $a \in R[x]$ using induction on $\phi(a)$. If $\phi(a)$ is the minimal element of M, then $a \in R^* = k^* \subset k[x]$. So, if $\phi(a) < n$ for $n \in M$, then we assume $a \in k[x]$. Let $\phi(a) = n$. Then there exist $b, c \in R$ such that $a = bx + c$ where $x = c$ or $\phi(c) < \phi(x)$. In the case of $x = c$, we have $a = x(b + 1)$, and so $\phi(a) \geq \phi(b + 1)$. Since x is a non-unit in R, we see that $\phi(a) > \phi(b + 1)$. Hence $b + 1 \in k[x]$, whence $a = x(b + 1) \in k[x]$. In the case of $\phi(c) < \phi(x)$, since $\phi(c)$ is the minimal element of M, we have $c \in R^* = k^*$. Hence $\phi(a) = \phi(a - c) = \phi(bx) \geq \phi(b)$. Since x is a non-unit, we see that $\phi(a) > \phi(b)$. Therefore $b \in k[x]$. Consequently, $a \in k[x]$.

q.e.d.

We denote the algebraic closure of a field k by \overline{k}.

Conjecture. Let k be a field, R be a k-affine Euclidean domain and $R^* = k^*$. If $R \otimes_k k$ is a Euclidean ring, then R is a field or $R \simeq k[X][1/f(X)]$ where $f(X)$ is a polynomial of $k[X]$.

References
