On $\Lambda(\varphi, M)$-spaces

Kōji Nakamura*

1. Introduction and Preliminary. In 1951, G. G. Lorentz [7] has introduced a class of function spaces called Λ-spaces. Let $\varphi(t)$ be a positive integrable and almost everywhere equivalent to a non-increasing function defined on $(0, l), l<\infty$. For a measurable function f, we denote by f^*, the decreasing (truly, non-increasing) rearrangement of f [2; p. 260-299], [6; p. 60]. It is defined as follows. Let $\mu_f(\alpha)$ be the Lebesgue measure of the set $\{t : |f(t)| > \alpha\}$ for any real number α. Then $\mu_f(\alpha)$ is right-continuous, i.e., $\lim_{\alpha_n \to \alpha} \mu_f(\alpha_n) = \mu_f(\alpha)$. Now we define the function $f^*(x)$ as the right-inverse of $\mu_f(y)$, i.e.,

\begin{equation}
(1.1) \quad f^*(x) = \inf\{y : \mu_f(y) \leq x\}.
\end{equation}

The space $\Lambda(\varphi, p)$, $p > 1$ is the set of all measurable functions f. We shall define the norm $\|f\|$, such that

\begin{equation}
(1.2) \quad \|f\| = \left\{ \int_{0}^{l} \psi(t) f^*(t)^p dt \right\}^{1/p} < \infty.
\end{equation}

Then, $\Lambda(\varphi, p)$ equipped with the norm $\|\cdot\|$ defined by (1.2), is a reflexive Banach space where $1 < p < \infty$ [7].

Hence we can regard as the p-th power of function is a convex on the positive real line. Now let $M(u)$, $0 \leq u < \infty$ be a N-function, φ be as above, and for a measurable function f we put

\begin{equation}
(1.3) \quad \rho(f) = \int_{0}^{l} \psi(t) M[f^*(t)] dt.
\end{equation}

In this paper, we shall discuss with a class $\Lambda(\varphi, M)$, which extends that of the spaces $\Lambda(\varphi, p)$, where the function $M(u)$ is a N-function in the sense [5; p. 6]. The set $\Lambda(\varphi, M)$ of all f with $\rho(\varphi, f) < \infty$ for some $\alpha > 0$ is a modular space and ρ is a modular on $\Lambda(\varphi, M)$

Received February 19, 1970.

*Department of Mathematics, Faculty of Science, Ibaraki University, Mito, Ibaraki, Japan.
In the sense of Nakano [12], i.e.,

\(\Lambda(\varphi, M) = \{ f : \rho(\alpha f) < \infty, \text{ for some } \alpha > 0 \} \).

In §2, we shall show that \(\Lambda(\varphi, M) \) is a modular space and a Banach space with the norm which is induced by the modular (1.3). In §3, we shall treat with the dual space \(\Lambda^*(\varphi, M) \) of \(\Lambda(\varphi, M) \) and show that the spaces \(\Lambda(\varphi, M) \) are reflexive if \(M \) and \(N \), the dual of \(M \), satisfy (\(\Delta_2 \)) and (\(\Delta_2' \))-condition, generalizing the Theorem 4 in [7; p. 417].

For two measurable functions \(f \) and \(g \), if they are equimeasurable to each other, i.e., \(\mu_f(\alpha) = \mu_g(\alpha) \), then we write \(f \sim g \).

For two measurable functions \(f \) and \(g \) defined on \((0, 1) \), \(f < g \) means that \(\int_0^x f \ast dt \leq \int_0^x g \ast dt \) for all \(x \) with \(0 < x < 1 \).

Here we present several basic properties about \(f \ast \) and the preorder "\(\ast \)".

(1.5) \(f < g \iff f \ast < g \ast \iff \mathcal{M}(f \ast) < \mathcal{M}(g \ast) \).

In fact, the equivalence of left hand side is obvious from the definition. For the proof of right hand side, see [7; p. 414].

Furthermore if \(\varphi(t) \) is positive decreasing, then

(1.6) \(f \ast < g \ast \iff \mathcal{M}(f \ast) < \mathcal{M}(g \ast) \).

For the proof, see [7; p. 414]. Also we have

(1.7) \((f + g) \ast < f \ast + g \ast \).

Because,

\[
\int_0^x (f + g) \ast dt = \sup \int_\varepsilon^x | f + g |(t) dt
\]

\[
\mu(e) = x
\]

(\(\mu : \) Lebesgue measure)

\[
\leq \sup \int_\varepsilon^x (| f(t) | + | g(t) |) dt
\]

\[
\leq \sup \int_\varepsilon^x | f(t) | \ dt + \sup \int_\varepsilon^x | g(t) | \ dt
\]

\[
\leq \int_0^x f \ast dt + \int_0^x g \ast dt.
\]

Also we have
(1.8) \(f g \leq f^* g^* \).

For the proof, see [2; p. 278] or [9; p. 102]. Since \(M \) is a convex function, we obtain

(1.9) \(M[(\alpha f + \beta g)^*] \leq \alpha M[f^*] + \beta M[g^*] \), where \(\alpha > 0, \beta > 0, \alpha + \beta = 1 \), by (1.5) and (1.7).

2. **The spaces** \(\Lambda(\varphi, M) \). Let \(M(u) \) be a \(N \)-function [5; p. 6], that is, there exist a function \(p(t) \) which is right-continuous and positive non-decreasing such that \(p(0) = 0 \) and

\[
M(u) = \int_0^u p(t) dt, \quad 0 \leq u < \infty.
\]

Theorem 1. \(\Lambda(\varphi, M) \) is a modular space with the modular \(p \).

Proof. First \(\Lambda(\varphi, M) \) is a linear space. For any \(f, g \in \Lambda(\varphi, M) \),

\[
\rho(\alpha f + \beta g) \leq \rho\left(\frac{1}{2} \alpha \rho_0(f + g) \right)
\]

\[
\leq \frac{1}{2} \left(\rho(\alpha f) + \rho(\beta g) \right),
\]

for \(\alpha_0 = 2\max(\alpha, \beta) \). We can see that \(\rho(\alpha f), \rho(\alpha g) < \infty \) for \(f \) and \(g \). Therefore \(\Lambda(\varphi, M) \) is linear.

The following properties are easily shown from the definition of \(\rho \).

(\rho. 1) \(0 \leq \rho(f) \leq \infty \) (for any measurable function \(f \)), and \(\rho(\| f \|) = \rho(f) \) and \(\rho(0) = 0 \);

(\rho. 2) For any \(f \in \Lambda(\varphi, M) \), and a positive real number \(\alpha, \rho(\alpha f) < \infty \);

(\rho. 3) \(\rho(\alpha f) = 0, \alpha > 0 \), then \(f = 0 \) a.e.;

(\rho. 4) If \(\| f \| \leq \| g \| \), then \(\rho(f) \leq \rho(g) \) (monotone);

(\rho. 5) \(\alpha \geq 0, \beta \geq 0, \alpha + \beta = 1 \), then \(\rho(\alpha f + \beta g) \leq \alpha \rho(f) + \beta \rho(g) \), (convex);

(\rho. 6) \(0 \leq f_n^* f \), then \(\rho(f) = \sup_n \rho(f_n) \) (upper semi-continuous).

To see (\rho. 6) we used the fact that \(0 \leq f_n \uparrow f \) implies \(f_n^* \downarrow f^* \). Thus we conclude our assertion.

Here, \(M \) is called to satisfy the \((D) \)-condition, if there exist a constant \(\gamma \) and some \(u_0 \geq 0 \), such that

(2.1) \(M(2u) \leq \gamma M(u) \) for all \(u \geq u_0 \).
Then we define a class \(\Lambda_0(\varphi, M) \) of all measurable functions \(f \) that \(\rho(f) < \infty \), i.e.,

\[
(2.2) \quad \Lambda_0(\varphi, M) = \{ f : \rho(f) < \infty \}.
\]

Theorem 2. If \(M \) satisfies \((A_2)\)-condition, then \(\Lambda_0(\varphi, M) = \Lambda(\varphi, M) \).

Proof. We have always \(\Lambda_0(\varphi, M) \subseteq \Lambda(\varphi, M) \). Since, for any \(f \in \Lambda(\varphi, M) \), then \(\rho\left(\frac{1}{2} f\right) < \infty \). Thus we have

\[
\rho(f) \leq \int_{\varphi}^{\varphi} M[f^*] dt
\]

\[
\leq \gamma \int_{\varphi}^{\varphi} M\left[\frac{1}{2} f^*\right] dt
\]

\[
= \gamma \rho\left(\frac{1}{2} f\right) < \infty,
\]

i.e.,

\[f \in \Lambda_0(\varphi, M). \]

Therefore we conclude our assertion.

Further \(\rho(f) \) satisfies some properties as follows. A modular \(\rho \) on \(\Lambda(\varphi, M) \) is said to be **lower semi-additive**,\n
\[
(2.3) \quad \rho(f + g) \leq \rho(f) + \rho(g) \quad \text{for } 0 \leq f, g \in \Lambda(\varphi, M).
\]

In fact, since \(\sup\{f^*, g^*\} < (f + g)^* \) with the preorder \(< \), then we have our assertion.

Furthermore, by \((\rho, 5) \), \(\rho(\alpha f) \) is a **convex function of \(\alpha \)** for each \(f \), i.e.,

\[
(2.4) \quad \rho\left(\frac{\alpha + \beta}{2} f\right) \leq \frac{1}{2} \left(\rho(\alpha f) + \rho(\beta g) \right).
\]

Now we can define the norm of \(f(\in \Lambda(\varphi, M)) \) which is called **Luxemburg norm**, as follows:

\[
(2.5) \quad \| f \| = \inf \{ \xi : \rho\left(\frac{f}{\xi}\right) \leq 1, \xi > 0 \}.
\]

Then, it is known that \((2.5) \) satisfies the norm condition. This norm \((2.5) \) obviously satisfies the following:

\[
(2.6) \quad |f| \leq |g| \iff \| f \| \leq \| g \|;
\]

\[
(2.7) \quad 0 \leq f_n \uparrow f \iff \| f_n \| \uparrow \| f \|.\]
We can see from the definition that \(\| f \| \leq 1 \) is equivalent to \(\rho(f) \leq 1 \).

Theorem 3. \(\Lambda(\psi, M) \) is a Banach space with the induced norm (2.5) by the modular \(\rho(f) \).

Proof. We shall show the completeness. By (2.7), we obtain the property that is called to be monotone complete (the weak Fatou property) in the sense of Amemiya.

\[
0 \leq f, \quad \sup || f_n || < \infty \implies f \in \Lambda(\psi, M),
\]

and hence \(\Lambda(\psi, M) \) is complete by the theorem in [4].

3. The reflexivity of the space \(\Lambda(\psi, M) \). First we shall construct the dual space of \(\Lambda(\psi, M) \). Let \(N(\psi) \) be the N-function complementary to \(M(\psi) \) in the sense of Young [5; p. 11]. That is to say, the function \(q(s) \) is the right inverse of \(p(t) \) which is defined by the equality:

\[
q(s) = \sup_{p(t) \leq s} t, \quad 0 < s < \infty.
\]

Then we have

\[
N(\psi) = \int_0^\psi q(s) \, ds, \quad 0 < \psi < \infty.
\]

Next we shall give some definitions and propositions which will be needed in the sequel. Now, let \(G(x) = \int_a^x g(t) \, dt \), where \(g(t) \) is integrable and positive on \((0, 1) \), and \(\psi(x) = \int_a^x \psi(t) \, dt \), \(0 < x < \infty \). The function \(G(x) \) is said to be \(\psi \)-concave, if

\[
\frac{G(x) - G(a)}{\Phi(x) - \Phi(a)} \geq \frac{G(b) - G(a)}{\Phi(b) - \Phi(a)}, \quad a < x < b.
\]

Lorentz [6; §3.6, Theorem 3.6.3] has shown the following proposition.

Proposition 1. The function \(G(x) = \int_a^x g(t) \, dt \) is \(\psi \)-concave if and only if \(g(t) = \psi(t) D(t) \) a.e., where \(D(t) \) is a positive decreasing function.

We define for each measurable function \(g(t) \),

\[
\tau(g) = \inf_{\psi \leq \psi_0} \int_0^\psi N[D] \, dt,
\]

(3.1)
where the infimum is taken for all decreasing positive functions $D(t)$ for which $g^* < \varphi D$.

The conjugate modular $\overline{\rho}$ [12; p. 92] of ρ, is defined by

\begin{equation}
\overline{\rho}(g) = \sup_{f \in \Lambda(\varphi, M)} \left\{ \int_{0}^{t} f \, g \, dt \right\}.
\end{equation}

for any measurable function g. We consider the dual space of $\Lambda(\varphi, M)$, denoted by $\Lambda(\varphi, M)$, as follows:

\begin{equation}
\Lambda(\varphi, M) = \{ g : \rho(\alpha g) \rightarrow \infty \text{ for some } \alpha > 0, \text{ and } g \text{ is measurable} \}.
\end{equation}

Then $\Lambda(\varphi, M)$ is also a modular space.

Theorem 4. For each $g \in \Lambda(\varphi, M)$, we have $\overline{\rho}(g) \leq \tau(g)$.

Proof. By Young's inequality and (1.8), we have, for any decreasing positive function D with $g^* < \varphi D$,

\begin{align*}
| \int_{0}^{t} f \, g \, dt | & \leq \int_{0}^{t} f^* \, g^* \, dt \\
& \leq \int_{0}^{t} f^* \, \varphi \, D \, dt \\
& \leq \int_{0}^{t} \varphi M[f^*] \, dt + \int_{0}^{t} \varphi N[D] \, dt,
\end{align*}

and hence

\begin{equation}
| \int_{0}^{t} f \, g \, dt | - \rho(f) \leq \int_{0}^{t} \varphi N[D] \, dt.
\end{equation}

Thus we have

\begin{equation}
\sup_{f \in \Lambda(\varphi, M)} \left\{ | \int_{0}^{t} f \, g \, dt | - \rho(f) \right\} \leq \inf_{g < \varphi D} \int_{0}^{t} \varphi N[D] \, dt.
\end{equation}

Hence

\begin{equation}
\overline{\rho}(g) \leq \tau(g).
\end{equation}

Now we shall show that $\overline{\rho}(g) = \tau(g)$ on $\Lambda(\varphi, M)$. To show the result, we need some definitions. For a given g, g^0 is the smallest (in the sense of the relation $<$, see §1) function among the functions satisfying $g < h = \varphi D$ with a positive decreasing function D, and is called the level function of g with respect to φ. Lorentz has shown the following proposition [4; §3.6, Theorem 3.6.4].
PROPOSITION 2. Let \(g(t) \) be integrable and positive, and let \(D^o \) be defined by \(g^o = \varphi D^o \). For any \(G(x) = \int_a^x g(t) \, dt \), the function \(G^o(x) \) is also of the form \(G^o(x) = \int_a^x g^o(t) \, dt \), \(g^o \geq 0 \). Then \(G^o(x) = G(x) \) holds a.e. (consequently \(g(t) = g^o(t) \) a.e.) except perhaps for the maximal intervals \((a, b) \) of constancy of \(D \); on each such interval \((a, b) \), \(\int_a^b g^o \, dt = \int_a^b g \, dt \).

Thus we obtain that for a given integrable function \(g \) the infimum of (3.1) is attained for \(D = D^o \):

\[
\inf_{\varphi \leq \varphi_0} \int_a^t \varphi N[D] \, dt = \int_a^t \varphi N[D^o] \, dt,
\]

and hence

\[
(3.4) \quad \tilde{\varphi}(g) = \int_a^t \varphi N[D^o] \, dt.
\]

Now we shall define the condition of N-function \(N(v) \) which is called \((\tilde{\varphi}_2)\)-condition. There exist real number \(\alpha, \beta \); \(1 < \alpha < \beta \) and some \(v_0 \), such that

\[
(3.5) \quad N(\alpha v) \leq \beta N(v) \quad \text{for all } v \geq v_0.
\]

If the N-function \(M(u) \) satisfies the \((\tilde{\varphi}_2)\)-condition, then it's complementary N-function \(N(v) \) satisfies \((\tilde{\varphi}_2)\)-condition. Moreover, we obtain that, if N-function satisfies \((\tilde{J}_2)\)-condition, then there exists a constant \(\vartheta(>1) \),

\[
(3.6) \quad vq(v) \leq \vartheta N(v) \quad \text{for all } v \geq v_0.
\]

THEOREM 5. Suppose that the N-function \(M(u) \) satisfies the \((\tilde{J}_2)\)-condition, then for \(g(\in \Lambda(\varphi, M)) \),

\[
\bar{\varphi}(g) = \tilde{\varphi}(g).
\]

PROOF. Since \(g^o = \varphi D^o \) for \(g^* \), in virtue of (3.4), we have

\[
\int_a^t f^* g^* \, dt = \int_a^t f^* \varphi D \, dt.
\]

(Because, for some function \(f^* = q[D^o(t)] \) as \(f(t) \), on each the maximal interval \((a, b) \) of constancy of \(D^o \), \(D^o \) is constant, then \(q[D^o(t)] \) is constant: otherwise, \(g^* = g^o = \varphi D^o \) a.e., then \(f^* g^* = f^* \varphi D^o \).) In the Young's inequality for such \(f \), the equality sign holds.
Therefore we have
\[\int_0^t f^* g^* dt = \rho(f) + \int_0^t \varphi N[D^\rho] dt ; \]
\[\int_0^t f g dt \leq -\rho(f) = \tau(g), \]
\[i. e., \]
\[-\rho(f) \geq \tau(g). \]
Now, we have from (3.6) and Young's inequality, for any \(f(=q[D]) \),
\[\int_0^t \varphi M[f] dt = \int_0^t \varphi D^\rho q[D^\rho] dt - \int_0^t \varphi N[D^\rho] dt \]
\[\leq (\delta - 1) \int_0^t \varphi N[D^\rho] dt. \]
Therefore there exists a function \(f(=q[D]) \) in \(\Lambda(\varphi, M) \), and we obtain from Theorem 4, \(\rho'(g) = \tau(g) \).
\(\varphi N[D^\rho] \) is integrable whenever \(\int_0^t f g dt - \rho(f) \) is bounded. Then \(g(=\varphi D^\rho) \in \Lambda(\varphi, M) \). For the proof, see [6; p. 73-74].
We denote the Banach dual of \(\Lambda(\varphi, M) \), by \(\Lambda^*(\varphi, M) \), consisting of all linear functionals \(F_g(f) = \int_0^t f g dt \) defined on \(\Lambda(\varphi, M) \). We introduce the norm \(\| g \|_\omega \) of \(g \), which is called Orlicz norm as follows;
\[\| g \|_\omega = \sup_{f \in \Omega, |f| \leq 1} \int_0^t f g dt \]
Then we have [3; p. 80]
\[\| g \|_\omega \leq \| g \| \leq 2 \| g \|_\omega \]
Since the norm \(\| F_g \| \) of the linear functional \(F_g \) is defined as
\[\| F_g \| = \sup_{\| f \|_\omega \leq 1} \int_0^t f g dt \]
we obtain that the norm \(\| g \|_\omega \) on \(\Lambda(\varphi, M) \) is equivalent to the norm \(\| F_g \| \) of the linear functional \(F_g \) on the Banach dual of \(\Lambda^*(\varphi, M) \) (note that \(\| f \|_\omega \leq 1 \Rightarrow \rho(f) \leq 1 \)). Therefore we have \(\Lambda(\varphi, M) \) is isomorphic to \(\Lambda^*(\varphi, M) \). Then we obtain the following theorem.

Theorem 6. If both the \(N \)-functions \(M \) and \(N \) satisfy \((\Delta_2) \)-condition, then \(\Lambda(\varphi, M) \) is reflexive as a Banach space.
PROOF. From the definition of \(\bar{\rho}(g) \)
\[
\sup_{g \in \Lambda(\varphi, M)} \left\{ \left| \int_0^\varphi f g dt \right| - \bar{\rho}(g) \right\} \leq \rho(f).
\]
Here, for some \(f(= \rho[D]) \) [12; Theorem 2.5],
\[
\sup_{g \in \Lambda(\varphi, M)} \left\{ \left| \int_0^\varphi f g dt \right| - \bar{\rho}(g) \right\} = \rho(f).
\]
Hence we have \(\Lambda(\varphi, M) = \Lambda(\varphi, M) \). Since
\[
\Lambda(\varphi, M) = \Lambda^*(\varphi, M),
\]
we have
\[
\Lambda^{**}(\varphi, M) = \Lambda(\varphi, M)^* = \Lambda(\varphi, M) = \Lambda(\varphi, M).
\]
Thus we obtain our assertion.

References