Occurrence of *Cronobacter* spp. in Dried Foods, Fresh Vegetables and Soil

SHIGEKO UEDA*

Laboratory of Hygiene, Kagawa Nutrition University, 3-9-1 Chiyoda, Sakado-shi, Saitama 350-0214, Japan

Received 29 July, 2016/Accepted 26 September, 2016

The present study surveyed the occurrence of *Cronobacter* spp. in dried foods including milk powder, spices and herbs and others, and fresh vegetables commercially available in markets, and ground soil materials for the agriculture. *Cronobacter* spp. were isolated from 15% of 33 spice and herb samples and 3% of 36 taste foods, and these were *C. turicensis*, *C. malonaticus*, *C. sakazakii* and *C. dubliensis*. *Cronobacter* spp. from fresh vegetables were detected in 12% of field vegetables and 13% of hydroponic vegetables. *C. turicensis* was prevalent in field vegetables, and *C. malonaticus* was in hydroponic ones. And, *Cronobacter* spp. in shredded vegetables were detected from 44% of 9 samples, and these were *C. dubliensis*, *C. turicensis* and *C. sakazakii*. Also, *Cronobacter* spp. in soil from rice field, vegetable field and sandpits were predominantly *C. sakazakii* and *C. malonaticus*.

Key words: *Cronobacter* spp. / Dried food / Fresh vegetables / Soil.

*Cronobacter* spp. are recognized as opportunistic pathogens causing rarely life-threatening infections such as meningitis, necrotizing enterocolitis and bacteremia in premature, low-birth and immunocompromised infants (FAO/WHO, 2008). Particularly, it should be paid attention that infants given contaminated milk formula suffered from meningitis, enteritis and sepsis (Simmons et al., 1989; Van Acker et al., 2001). Therefore, the bacteria should be considered as one of agents of foodborne illnesses.

*Cronobacter* spp. are gram-negative, facultative anaerobic, nonspore-forming, motile bacteria belonging to the family Enterobacteriaceae. Iversen et al., (2008) described that the species consisted of *S. sakazakii*, *C. dublinensis*, *C. dublinensis* subsp. *dublinensis*, *C. dublinensis* subsp. *lactaridi*, *C. dublinensis* subsp. *lausannensis*, *C. malonaticus*, *C. muytjensii*, *C. turicensis* and the unnamed genotype species I. Thereafter, *C. condimenti* and *C. universalis* were added in 2012 (Joseph et al., 2012), and *C. helventicus*, *C. pulveris* and *C. zurichensis* were added in 2013 (Brady et al., 2013). The natural habitat of these bacteria is unknown, but the various growth properties suggests that *Cronobacter* spp. are associated with plants (Schmid et al., 2009).

*Cronobacter* spp. have been isolated in various environmental materials such as soil, water from household and milk powder factories, and utensils used to mix infant formula (Neelam et al., 1987; Friedemann, 2007, Kndhai et al., 2004; Muytjens et al., 1983). Moreover, *Cronobacter* spp. have been isolated from a wide spectrum of foods and food ingredients (Friedmann, 2007). The present survey aimed to investigate the occurrence of *Cronobacter* spp. in dried foods including milk powder, spices and herbs and others, and fresh vegetables commercially available in markets, and ground soil materials for the agriculture, and the bacterial isolates were identified by means of standard biochemical tests.

A total of 228 samples of dried foods were purchased from retailers in Kantoh area. Their survey was examined on 33 kinds of dried spices and herbs, 64 of powdered milk products, 11 of dried fruits, 7 of sea food products, 36 of dried taste foods, 49 of convenience foods and 28 of other dried type-foods. Also, a total of 123 samples of fresh vegetables obtained from retailers in Saitama prefecture. The fresh vegetables were 60 samples harvested from outdoor fields, 54 samples cultured hydroponically and 9 samples of shredded vegetable. In addition, soil samples were collected from 25 of rice fields, 26 of vegetable fields, 24 of flower beds and 25 of park sandpits in Saitama.
The culture could be checked by confirming that all colonies were yellow. Their identification was by means of biochemical tests. In addition to Gram staining and phenotype characterization derived from commercial API ID 32 E (bioMeriux CZ, Czech Republic) devices according to procedure's instructions, the following tests were performed using conventional manual methods: motility test, methyl red test, reduction of nitrate, gas formation from D-glucose, production of catalase, cytochrome oxidase test, indole production, utilization of malonate, and acid production from dulcitol.

The standard plate counts and the qualitative detection results of coliform bacteria and Cronobacters spp. from dried foods, fresh vegetables and soil samples were shown in Table 1. The average plate counts in dried foods were 2.1 ± 1.2 Log CFU/g, and the counts were higher in spices and herbs, and sea foods than other dried food. Coliforms were detected only in 1 (14%) sample among seafood samples. Cronobacter spp. were detected from 5 (15%) of 33 kinds of spices and herbs and 1 (3%) of 36 taste foods. The detection frequency of Cronobacter spp. was especially high in herbs and

<table>
<thead>
<tr>
<th>TABLE 1. Incidences of standard plate counts, coliform bacteria, Cronobacter spp. in dried foods, fresh vegetables and soil samples.</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of samples</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Dried foods</td>
</tr>
<tr>
<td>Spices and Herbs</td>
</tr>
<tr>
<td>Powdered milk</td>
</tr>
<tr>
<td>Dried fruits</td>
</tr>
<tr>
<td>Sea foods</td>
</tr>
<tr>
<td>Dried taste foods</td>
</tr>
<tr>
<td>Convenience foods</td>
</tr>
<tr>
<td>Other</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>Fresh vegetables</td>
</tr>
<tr>
<td>from Fields</td>
</tr>
<tr>
<td>Hydroponic cultures</td>
</tr>
<tr>
<td>Shredded vegetables</td>
</tr>
<tr>
<td>Soil</td>
</tr>
<tr>
<td>Rice fields</td>
</tr>
<tr>
<td>Vegetable fields</td>
</tr>
<tr>
<td>Flower beds</td>
</tr>
<tr>
<td>Sandboxes</td>
</tr>
</tbody>
</table>

1) SPC: Standard plate counts
2) Coliforms were estimated by conventional MPN assay with 5.55 g of samples.
3) Cronobacter spp. were detected after 5 or 10 g of samples were precultured in buffered peptone water 37°C for 18 h.
<table>
<thead>
<tr>
<th>Sample</th>
<th>No. of positives</th>
<th>No. of Cronobacter strains</th>
<th>Total</th>
<th>Cs</th>
<th>Cm</th>
<th>Cd</th>
<th>Ct</th>
<th>Unident.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Dried foods</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peppermint</td>
<td>1</td>
<td>10</td>
<td>4</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basil</td>
<td>1</td>
<td>11</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italian parsley</td>
<td>1</td>
<td>7</td>
<td>5</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marjoram</td>
<td>1</td>
<td>20</td>
<td>1</td>
<td>4</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sage</td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>5</td>
<td>54</td>
<td>15</td>
<td>14</td>
<td>3</td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>creaming powder</td>
<td>1</td>
<td>8</td>
<td>3</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Fresh vegetables</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field vegetables</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spinach</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carrot</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turnip</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Okra</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Cherry tomatoes</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>7</td>
<td>14</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydroponic cultures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leaf carrot</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alfalfa</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soybean sprouts</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>7</td>
<td>15</td>
<td>5</td>
<td>9</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shredded vegetable mixtures</td>
<td></td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>11</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Soil</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rice field</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>12</td>
<td>1</td>
<td>10</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vegetable field</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td></td>
<td></td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>9</td>
<td>3</td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>29</td>
<td>5</td>
<td>21</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sandboxes</td>
<td>8</td>
<td>4</td>
<td>3</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>39</td>
<td>28</td>
<td>9</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) Cs: C. sakazakii; Cm: C. malonaticus; Cd: C. dublinensis; Ct: C. turicensis
2) Unident.: Unidentification
spices, but other 222 dried food samples except 1 taste food (creaming powder) were not contaminated with Cronobacter spp. On fresh vegetables, the average standard plate counts were 3.6±0.9 Log CFU/g in ones from fields, and 4.7±0.4 Log CFU/g in hydroponic cultures, while coliforms were detected in 38 (63%) among 60 of field vegetables, and in 37 of 54 (69%) hydroponic vegetables. Also, Cronobacter spp. were detected in 7 (12%) of field vegetables and 7 (13%) of hydroponic vegetables. In commercial artificially shredded vegetables, the average plate counts were 4.5±0.1 Log CFU/g, coliforms were detected in 8 of 9 (89%) samples, and Cronobacter spp. were isolated from 4 of 9 (44%) samples. On soil samples, the standard plate counts were 6 Log CFU/g in rice fields, vegetable fields and flower beds, but 5 Log CFU/g in the samples from sandboxes. Coliforms from soil samples were detected in 5 of 25 (20%) rice field samples, 4 (15%) of 26 vegetable field ones, 10 of 25 (40%) flower bed ones, and 7 of 24 (29%) sandbox ones. Also, Cronobacter spp. were isolated from 1 (4%) of rice field samples, 4 (15%) of vegetable field ones, and 8 (33%) of sandbox ones, but they were not detected from all flower bed samples. Ogihara et al. (2014) suggested that there were positive correlations between the viable-coliforms counts and Cronobacter counts as reported by Jung and Park (2006). But, samples contaminated with Cronobacter were not necessarily contaminated with coliforms and high levels of the plate counts.

The species of Cronobacter spp. isolated from dried food, fresh vegetable and soil samples were shown in Table 2. Among dried foods, Cronobacter spp. were isolated from 5 kinds of spices and herbs containing peppermint, basil, Italian parsley, marjoram and sage, and creaming powder. The identified Cronobacter spp. were C. turicensis (44%), C. malonaticus (27%), C. sakazakii (24%) and C. dubliensis (5%). Five kinds of fresh vegetables (spinach, carrot, turnip, okra and cherry tomatoes) from fields were contaminated with C. turicensis (71%), C. sakazakii (7%) and C. dubliensis (7%). Leaf carrot, alfalfa and soybean sprouts among vegetables cultured hydroponically were contaminated with C. malonaticus (60%) and C. sakazakii (33%). Also, C. dubliensis (36%), C. turicensis (36%) and C. sakazakii (27%) were isolated from 4 commercially shredded vegetable samples. Although Hochel et al. (2012) and Ogihara et al. (2014) surveyed dried foods and food materials other than dried foods on incidences of Cronobacter spp., of which C. sakazakii was the most common contaminant, and some differences were recognized every food samples as for the distribution of Cronobacter species. On soil materials, Cronobacter spp. from 1 rice field was C. malonaticus only, whereas the common species from 4 vegetable fields were C. malonaticus (74%) and C. sakazakii (17%), and the common species from 8 sandboxes in parks were C. sakazakii (72%) and C. malonaticus (23%). In the present survey, the members of Cronobacter spp. were different among material types, and Cronobacter members were not necessarily found between dried foods, fresh vegetables and soil materials.

The members of Cronobacter spp. are ubiquitous bacteria that have been found in various foods particularly of plant origin and dried material. Some spice and herb materials and fresh vegetables tested in the present survey were contaminated with low level of Cronobacter spp. Although an impact of the consumption of contaminated foods on infants, elderly or immunocompromised individuals is not sufficient, addition of spices and herbs after cooking or handling of fresh vegetables should be noted in kitchen since Cronobacter spp. can multiply at room temperature, and conventional hygienic handling of foods would be required to control the viable bacterial counts, especially of Cronobacter spp.

REFERENCES


of eight cases of neonatal meningitis and sepsis due to Enterobacter sakazakii. J. Clin. Microbiol., 18, 115-120.