The Journal of Biochemistry
Online ISSN : 1756-2651
Print ISSN : 0021-924X
Identification of a Lysine Residue in the NADH-Binding Site of Salicylate Hydroxylase from Pseudomonas putida S-1
Kenzi SuzukiMitsuo MizuguchiTomoharu GomiEiji Itagaki
著者情報
ジャーナル フリー

1995 年 117 巻 3 号 p. 579-585

詳細
抄録
Salicylate hydroxylase from Pseudomonas putida S-1 was irreversibly inactivated by trinitrobenzenesulfonic acid (TNBS). The reaction was linearly dependent on TNBS concentration and the second-order rate constant was 120 M-1•min-1 for the holoprotein at pH 8.5. Modification of one mole of lysine residue per mole of enzyme caused a large loss of the activity, and the enzyme was no longer able to show NADH-dehydrogenase activity after uncoupling. The presence of NADH, NAD+, ATP, or AMP afforded protection against the inactivation. The enzyme modified at a single lysine residue was isolated by hydrophobic chromatography as an apoprotein form and characterized. It could bind FAD with the same Kd value for that of native apoprotein. The apparent Michaelis constant of the enzyme was increased 13-fold for NADH, but not for salicylate. Vmax. for NADH oxidation was decreased to one-fifth of that of the native enzyme. A peptide containing one trinitro-phenyl-lysine residue was isolated from the chymotryptic digest of the modified enzyme and its amino acid sequence was determined to be TADVAIAADGIKSSM, which is homologous to the sequence from R-154 to I-168 of salicylate hydroxylase from P. putida PpG7. The lysine in the peptide may represent a basic residue interacting with an anionic group of NADH in the binding site of the enzyme.
著者関連情報
© The Japanese Biochemical Society
前の記事 次の記事
feedback
Top