Calcium-Induced Exposure of a Hydrophobic Surface of Mouse ALG-2, Which Is a Member of the Penta-EF-Hand Protein Family

Masatoshi Maki,1 Kyoko Yamaguchi, Yasuyuki Kitaura, Hirokazu Satoh, and Kiyotaka Hitomi

Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601

Received for publication, July 22, 1998

ALG-2 is a 22 kDa EF-hand type Ca\(^{2+}\)-binding protein associated with lymphocyte apoptosis. Comparison of the primary structure of ALG-2 with those of EF-hand type proteins revealed that it belongs to the penta-EF-hand (PEF) protein family including the small subunit of calpain. We established a convenient method for the purification of the recombinant mouse ALG-2 expressed in *Escherichia coli*. The recombinant protein was first pelleted from a lysate in the absence of a Ca\(^{2+}\)-chelator, and then extracted with buffer containing EDTA/EGTA followed by purification by conventional column chromatographies. Estimation of the molecular mass by gel filtration suggested that the recombinant ALG-2 occurred as a monomeric form. Ca\(^{2+}\)-dependent precipitation was blocked by inclusion of non-ionic detergent Triton X-100, suggesting hydrophobic self-aggregation at high concentrations of the protein. The N-terminal deletion mutant lacking the hydrophobic non-PEF region was found to be more soluble than the wild type in the presence of Ca\(^{2+}\). Analysis using a fluorescent hydrophobicity probe indicated that ALG-2 exposed a hydrophobic surface in a Ca\(^{2+}\)-concentration dependent manner, the half-maximal effect occurring at approximately 6 \(\mu\)M. Mg\(^{2+}\) was not effective for the conformational change. On Western blotting, ALG-2 was detected in particulate fractions from cultured mammalian cells, suggesting the association of the protein with macromolecules in the cells.

Key words: ALG-2, apoptosis, calcium, calcium-binding protein, EF-hand.

MATERIALS AND METHODS

Materials—Most of the molecular biological reagents were purchased from Takara Shuzo (Kyoto), Toyobo (Osaka), or New England Biolabs (Beverly, MA, USA). Proteinase inhibitor Pefabloc was from Boehringer Mann-
Ca2+-Induced Exposure of a Hydrophobic Surface of ALG-2

Other reagent grade chemicals were obtained from Nacalai Tesque (Kyoto) or Wako Pure Chemicals (Osaka) and then cultivated for 2 h.

RT-PCR Cloning of Mouse ALG-2 cDNA.—After total mouse liver RNA had been transcribed with RAV-2 reverse-transcriptase using a mouse ALG-2 specific primer, the reaction mixture was boiled for 5 min and then chilled on ice. After centrifugation, 2 µl of the supernatant was used as the template for PCR in a total reaction mixture volume of 100 µl with Ex Taq polymerase (Takara, Kyoto) for 25 cycles. The primers used were: 5′-ACCATGGCTGCCTACTCCTACC-3′ (the nucleotide at the −3 position around the translation initiation codon was changed from C to A in order to match Kozak’s preferred initiation sequence (13)) and 5′-CTGGTTATACATGCTGAAAGCCA-3′ (containing the complementary sequence of the translation termination codon).

The DNA fragment in a 580 bp band was recovered from a 1% agarose gel with QIAEX II (QIAGEN, California, USA). After blunt-ending with T4 DNA polymerase, the fragment was inserted into the Smal site of enforcement cloning vector pKF3 (Takara). The nucleotide sequences of the isolated clones were confirmed with an automated fluorescent sequencer, ABI PRISM 310 (PE Applied Biosystems).

One of the clones, designated as pKF-ALG-2, was used for further subcloning.

Construction of an ALG-2 Expression Plasmid.—A T7 RNA polymerase system involving the E. coli host strain of BL21(DE3)pLysS was employed (14). Since the mouse ALG-2 cDNA contained NeoI sites at the translation initiation site and the C-terminal region, respectively, the full-length cDNA was inserted into pET-3d stepwisely. First, a synthetic oligonucleotide block corresponding to the C-terminal region was inserted between the NeoI and BamHI sites of pET-3d to prepare the intermediate construct, pALG-2-Cterm. The oligonucleotide block contained a stop codon (underlined) overlapping an EcoRI site, and overhanging residues of NeoI and BamHI sites: 5′-CATGCTTCTCAGATGTTATGCTAGCAGA-3′

Then, the 560 bp NeoI fragment corresponding to the remaining ALG-2 cDNA was inserted into the NeoI site of pALG-2-Cterm to create the full-length construct, pET-ALG-2. A deletion mutant lacking the hydrophobic N-terminal residues, ALG-2-ΔN23, was obtained by inserting a fragment obtained on PCR using the upper primer containing an NeoI site at the new N-terminal site.

Purification of Recombinant ALG-2.—E. coli host strain BL21(DE3)pLysS was transformed with pET-ALG-2. The transformant was cultured at 30°C overnight in ZB-broth (NZ Amine A 10 g/liter, NaCl 5 g/liter) containing 50 µg/ml ampicillin and 12.5 µg/ml chloramphenicol, diluted with ZYG medium (NZ Amine A 10 g/liter, yeast extract 5 g/liter, NaCl 5 g/liter, 0.4% glucose) supplemented with the antibiotics, and then cultured until the mid-log phase at 37°C. Induction was performed by adding IPTG to 0.2 mM, and then cultivation was continued for 2 h.

For large scale purification of ALG-2, 5 mM CaCl\textsubscript{2} was added to the culture medium to ensure precipitation of the protein. All purification procedures were performed at 4°C. Harvested cells from one liter-culture were frozen at −20°C, thawed, and then suspended in 50 ml of lysis buffer (10 mM Tris-HCl, pH 7.5, 10 mM NaCl, 1 mM dithiothreitol, 1 mM PMSF, 0.1 mM Pefabloc, 5 mM benzamidine). Lysis was performed by sonication for 7 min with 20% pulses (Shimadzu USP-300 ultrasonic processor). After centrifugation at 12,000 rpm for 15 min, the pellets were washed once with lysis buffer containing 0.1 mM CaCl\textsubscript{2}, suspended in lysis buffer supplemented with 5 mM EDTA and 5 mM EGTA, and then mixed for 15 min. After centrifugation, the supernatant was saved and combined with the re-extracted solution. Ammonium sulfate precipitation was performed at 20-35% saturation for the wild type ALG-2 and at 20-45% saturation for the N-terminal deletion mutant, ALG-2-ΔN23, and the pellets were dissolved in 10 ml of buffer A (20 mM Tris-HCl, pH 7.5, 1 mM EDTA, 5 mM 2-mercaptoethanol) and then dialyzed against the buffer. The dialysate was centrifuged to remove insoluble material. Anion exchange chromatography was performed using Hitrapaq (Pharmacia) with a linear gradient of 50-250 mM NaCl. The eluted sample was further purified by gel filtration chromatography on Superdex75 (Pharmacia) in buffer A containing 150 mM NaCl. The following modified purification procedure was found to be effective. To the disulphates of ammonium sulfate-precipitated solutions was added CaCl\textsubscript{2} to 2 mM, the wild type and mutant ALG-2 being precipitated. The pellets were dissolved in buffer A supplemented with 5 mM each of EDTA and EGTA, and then subjected to anion exchange chromatography. Molar extinction coefficients were calculated from the amino acid compositions with the program, ProtParam (http://www.expasy.ch/sprot/protparam.html), and the following values were used for the purified ALG-2 and its N-terminal deletion mutant, respectively: ε = 3.9 × 104 M-1 cm-1 (ALG-2); 3.6 × 104 M-1 cm-1 (ALG-2-ΔN23).

Fluorescence Measurements.—All fluorescence measurements were performed with a Shimadzu RF-5300C fluorescence spectrophotometer thermostated at 25°C. Spectra were corrected for the background signal. The purified ALG-2 was extensively dialyzed against buffer B (20 mM Tris-HCl, pH 7.5, 150 mM NaCl, 5 mM 2-mercaptoethanol). A stock solution of 100 mM TNS was dissolved in DMSO, and then stored at −20°C. A diluted solution of 1 mM TNS in 10% DMSO was used for the assay. Fluorescence spectra were obtained after preparation of samples of 1 µM ALG-2, containing 10 µM TNS in buffer B, with CaCl\textsubscript{2} added in 600 µl. Excitation was performed at 340 nm with a band width of 5 nm and emission spectra were collected with a band width of 5 nm. The concentration of a trace of Ca2+ which might contaminate buffer B was determined to be below 0.5 µM by the dual excitation ratio method using fura-2 (15).

Transient Expression of ALG-2.—A 0.58 kb BamHI/BglII fragment from pKF-ALG-2 was inserted into the BglII site of the eukaryotic expression vector, pCXN2 (16), and then plasmids with the sense (pCXN2-ALG-2-S) and antisense (pCXN2-ALG-2-AS) orientations were prepared using a plasmid purification kit from QIAGEN. COS-1 cells (ATCC CRL 1650), an African green monkey kidney derived fibroblast-like cell line, were cultured in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with...
10% heat-inactivated FBS, 4 mM L-glutamine, penicillin (100 units/ml), and streptomycin (100 μg/ml) at 37°C under humidified air containing 5% CO₂. Plasmid DNA, 6 μg, was introduced into COS-1 cells (approximately 1 x 10⁶ cells/10-cm dish) using lipofectin (GIBCO-BRL) in the absence of FBS according to the instruction manual provided, and cultured as described above for 40 h.

After washing with PBS, the cells were scraped off and collected in 1.5 ml tubes. Rough subcellular fractionation was performed by lysing the cells by sonication in the presence of 1 mM CaCl₂ or 5 mM EGTA, in 50 μl of low salt buffer (20 mM Tris-HCl, pH 7.5, 5 mM 2-mercaptoethanol, 2 mM MgCl₂) containing protease inhibitors (0.1 mM Pefabloc, 25 μM leupeptin, 10 μM E-64, and 1 μM pepstatin), followed by centrifugation at either 100,000 x g (Beckman TLA 100 rotor: 60,000 rpm) for 30 min or at 10,000 x g (Sakuma M-150 rotor: 12,000 rpm) for 5 min at 4°C.

Western Blotting Analysis—Proteins were separated by SDS-PAGE using 12.5% polyacrylamide gels, and then transferred to polyvinylidene difluoride membranes (Immobilon-P, Millipore) using a semi-dry blotter in the transfer buffer (24 mM Tris, 192 mM glycine, 15% methanol, 0.01% SDS, pH 8.3). Polyclonal antibodies against the purified mouse ALG-2 were raised in rabbits by the conventional method. The antiserum (5 ml) was loaded onto an affinity column of ALG-2 which had been immobilized to a HiTrap NHS-activated column (1 ml, Pharmacia). After washing the column successively with TBS, the washing buffer (20 mM Tris-HCl, pH 7.5, 1 M NaCl, 1% Triton X-100), TBS, and 0.15 M NaCl, antibodies were eluted with 0.1 M glycine-HCl buffer, pH 2.5, and then the eluate was neutralized with Tris. The affinity-purified antibody fraction (approximately 0.2 mg/ml) was diluted 1,000-fold with PBS containing 0.1% Tween 20 and then used as the primary antibody. Peroxidase-conjugated goat anti-rabbit IgG (H + L), purchased from Jackson Immuno-Research Laboratories (West Grove, PA, USA), was used as the secondary antibody. Immuno-signals were detected by the color development method using diaminobenzidine (DAB).

Protein Analyses—Protein concentrations were determined by the method of Bradford (17) using a kit from Bio-Rad. The hydrophobicity profile was obtained with the program, ProtScale (http://expasy.hcuge.ch/cgi-bin/prot-scale.pl), using the normalized consensus hydrophobicity scale (18). A window of 9 residues was selected.

RESULTS

Repetitive Domain Structure—As illustrated in Fig. 1A, mouse ALG-2 contains five repetitive sequences, among which EF-3 best matches the canonical sequence of the EF-hand structure proposed by Kretsinger (4). Although EF-5 well matches the sequence, it contains a two-residue insertion in its Ca²⁺-binding loop. From the results of deletion mutant analysis, Vito et al. suggested that both EF-1 and EF-3 were necessary for Ca²⁺-binding in the "Ca⁺⁺ overlay assay involving the glutathione-S-transferase-ALG-2 fusion protein (1). Since the Ca²⁺-coordinating positions, z, are occupied by basic residues, EF-2 and EF-4 may not bind Ca²⁺ at all or may bind only weakly. The hydrophobicity profile depicts five hydrophilic troughs where the Ca²⁺-binding loops are partially overlapped (Fig. 1B).

Expression of Recombinant ALG-2 in E. coli—The addition of IPTG to the culture medium induced ALG-2 efficiently as a major protein in E. coli (Fig. 2A). ALG-2 was recovered in the pellet when the lysis buffer containing no chelating agents was used, but most was recovered in the supernatant when the buffer contained EGTA and EDTA (Fig. 2B). Similar results were obtained for the deletion mutant of ALG-2 lacking the hydrophobic 23 N-terminal residues (Fig. 2C). In the cases of the PEF domains of calpain subunits, Ca²⁺ had no effect on the solubility even at 10 mM CaCl₂ (Fig. 2, D, E, and data not shown). The presence of 10 mM Mg²⁺ was not effective for precipitation of ALG-2 when the buffer contained 5 mM EGTA to chelate potentially contaminating Ca²⁺ (data not shown). The addition of 1% of non-ionic detergent Triton X-100 to the lysis buffer containing no or 0.1 mM CaCl₂ resulted in solubilization of the recombinant ALG-2 and ALG-2ΔN23.

Fig. 1. Repetitive EF-hand motifs in ALG-2. A: Five repetitive EF-hand like sequences (EF-1–EF-5). Identical or similar residues in at least three repeats are stippled. The cross-hatched bar above the EF-hand score shown in panel B. The canonical EF-hand sequence (4) contains 16 preferred residues: E, acidic; n, hydrophobic; O, oxygen-containing; G, glycine; I, aliphatic side chains (Ile, Leu, Val, and Met); asterisks, variable residues (often hydrophilic); hyphens, gaps. EF-hand score: number of matched residues. Calcium-coordinating positions are indicated by x, y, z, -y, -x, and -z, where the oxygen atoms of side chains (x, y, z, -x, -y, -z), carboxyls (-y), and water molecules (-x) are usually ligands. B: Hydrophobicity profile. Positive values are relatively hydrophobic. The regions of potential calcium-binding loops are indicated by closed bars. Cross-hatched bar, the N-terminal hydrophobic region.

J. Biochem.
Taking advantage of the Ca2+-dependent precipitation, we established a convenient method for purification of the recombinant ALG-2. The recombinant protein was first pelleted from the lysate in the absence of a Ca2+-chelator. ALG-2 was solubilized by extraction with buffer containing EDTA/EGTA, this process resulting in efficient purification of the protein (Fig. 3, lane 4). ALG-2 was further purified to homogeneity by ammonium sulfate precipitation (20-35% saturation), anion exchange column chromatography, and gel filtration chromatography. The molecular mass estimated with Superdex75 was about 28 kDa (Fig. 4), suggesting that the purified protein occurred as a monomeric form.

Ca2+-Dependent Precipitation and Inhibition by Triton X-100—The addition of Ca2+ to a solution containing 25 μM ALG-2 caused aggregation, and wild type ALG-2 was recovered in the pellet fraction (Fig. 5A). At a lower concentration of ALG-2 (1 μM), however, about half of the ALG-2 remained in the supernatant. The degree of aggregation was dependent on the Ca2+ concentration (Fig. 5B). The N-terminal deletion mutant, ALG-2-ΔN23, was more soluble than the wild type ALG-2. By including 1% Triton-X100 in the mixture containing Ca2+, most ALG-2 was recovered in the supernatant even at a higher concentration (25 μM), suggesting a hydrophobic interaction for the precipitation (Fig. 5A). At a much lower concentration (0.1 μM), ALG-2 was adsorbed to plastic tubes even in the absence of Ca2+ when the protein was incubated without a non-ionic detergent or carrier protein (bovine serum albumin) (data not shown).

Ca2+-Dependent TNS-Binding—TNS is a commonly used hydrophobic probe which shows significant fluorescence upon binding to hydrophobic sites in proteins (19). In the present study, excitation was performed at 340 nm instead of at 365 nm to avoid the Raman effect around 415 nm.

Fig. 2. Expression of mouse ALG-2 in E. coli. A: Induction of ALG-2 with IPTG in E. coli BL21(DE3)pLysS cells harboring expression plasmids was analyzed by SDS-PAGE, followed by CBB staining. Lanes 1 and 2, pET-ALG-2; 3 and 4, pET-3d. B, C, D, and E: Effects of divalent metal ions in the lysis buffer on the solubility of ALG-2 and other PEF proteins. ALG-2 (B), N-terminal deletion mutant ALG-2-ΔN23 (C), the μ-calpain large subunit PEF domain (D), and the calpain small subunit PEF domain (E) were expressed in E. coli as described in A and previously (25, 28), and the crude lysates were centrifuged at 13,000 rpm for 5 min. Samples of supernatants (Sup) and pellets (Ppt) were analyzed by SDS-PAGE. The lysis buffers used were: buffer L (20 mM Tris-HCl, pH 7.5, 150 mM NaCl) (lanes 1 and 2); buffer L containing 0.1 mM CaCl\textsubscript{2} (lanes 3 and 4); buffer L containing 5 mM each of EDTA and EGTA (lanes 5 and 6).

Fig. 3. Purification of the recombinant ALG-2. Samples from each purification step were analyzed by SDS-PAGE. Lane 1, total cell lysate; 2, cell lysate supernatant; 3, cell lysate pellet; 4, EDTA/EGTA extract; 5, ammonium sulfate precipitate (20-35% saturation); 6, anion exchange chromatography (HiTrapQ) fraction; 7, Superdex 75 fraction.

Fig. 4. Gel filtration chromatography of the recombinant ALG-2. ALG-2 (0.5 ml) purified by anion exchange chromatography was applied to a gel filtration column (1.6 cm x 60 cm, Superdex 75 HiLoad 16/60) equilibrated with 20 mM Tris-HCl, pH 7.5, 1 mM EDTA, 150 mM NaCl, 5 mM 2-mercaptoethanol using a HiLoad PSLC3 system (Pharmacia) at the flow rate of 0.8 ml/min. Molecular mass calibration was performed using bovine serum albumin (BSA: 67,000), ovalbumin (OVA: 43,000), chymotrypsinogen A (CHY: 25,000), and RNaseA (13,700). The elution volumes (V\textsubscript{e}) of the standard proteins are indicated by arrows. The V\textsubscript{e} (exclusion volume) and V\textsubscript{t} (total volume) values were obtained by applying blue dextran 2000 and acetonitrile, respectively. Inset: The K\textsubscript{av} value was calculated as follows: K\textsubscript{av} = (V\textsubscript{e} - V\textsubscript{c})/(V\textsubscript{t} - V\textsubscript{e}).
nm. In the absence of a protein, TNS showed a very low level of fluorescence background (Fig. 6A). The presence of ALG-2 affected the fluorescence slightly in the absence of Ca\(^{2+}\), and the degree of the enhancement was greater than in the case of CaM (data not shown). Inclusion of Mg\(^{2+}\) in the assay mixture caused significant enhancement of the fluorescence intensity, but not in the case of Mg\(^{2+}\). Quite similar spectra were obtained for the N-terminal deletion mutant, ALG-2-ΔN23 (data not shown). The Ca\(^{2+}\)-concentration dependency on the fluorescence enhancement was examined by monitoring the emission at 435 nm (Fig. 6B). The effect was observed slightly even at 2 μM and reached the maximal level at 20–50 μM for both the wild type and mutant ALG-2. The addition of EGTA to the mixture containing Ca\(^{2+}\) returned the fluorescence to the basal level, suggesting that the Ca\(^{2+}\)-dependent conformational change was reversible (data not shown).

Subcellular Localization of ALG-2 Expressed in Mammalian Cells—Transiently expressed ALG-2 in COS-1 cells was detected by Western blotting analysis using anti-ALG-2 antibodies (Fig. 7). The level of the immunoreactive 22 kDa protein was higher in the lysate of pCXN2-ALG-2-S (sense orientation)–transfected cells than in that of pCXN2-ALG-2AS (antisense orientation)–transfected cells, indicating that the 22 kDa band corresponded to ALG-2. When the lysates of the pCXN2-ALG-2-S transfected cells were centrifuged at 100,000 × g for 30 min, ALG-2 was detected in the pellets (Fig. 7, lanes 4 and 5), regardless of the absence (lanes 4 and 6) or presence (lanes 5 and 7) of Ca\(^{2+}\) in the buffer. To eliminate artifacts due to overexpression of the protein in the transfected cells,
Fig. 7. Subcellular localization of ALG-2 expressed in COS-1 cells. COS-1 cells were transfected with ALG-2 expressing plasmids and then cultured for 40 h. The proteins in total cell lysates (lanes 2 and 3), 100,000 × g pellets (lanes 4 and 5), and 100,000 × g supernatants (lanes 6 and 7) were separated by SDS-PAGE on a 12.5% gel and then stained with CBB or anti-ALG-2 antibodies (Western). Cell lysates were prepared in the presence of either 1 mM CaCl₂ (lanes 5 and 7) or 5 mM EGTA (lanes 4 and 6). Lane 1, recombinant ALG-2 (500 ng for CBB; 50 ng for Western); 2 and 4-7, pCXN2-ALG-2-S (sense)-transfected cells; 3, pCXN2-ALG-2-AS (antisense)-transfected cells.

untransfected cells were also used for examination of the subcellular localization (Fig. 8). ALG-2 was recovered in the particulate fractions (100,000 × g pellets) even in the presence of 1% Triton X-100. A difference in the effect of Ca⁺⁺ was observed on centrifugation at lower gravity (10,000 × g) using lysates containing the detergent. While ALG-2 was recovered in the supernatant in the absence of Ca⁺⁺ (lane 8), more than half of the ALG-2 was recovered in the pellet in the presence of Ca⁺⁺ (lane 9). Without Triton X-100, only a portion of ALG-2 appeared in the supernatant in the absence of Ca⁺⁺ (lane 4).

DISCUSSION

Ca⁺⁺ is one of the key second messengers and is involved in various cellular functions. Ca⁺⁺ signaling is mediated by a variety of Ca⁺⁺-activated enzymes and Ca⁺⁺-binding proteins (20). The EF-hand motif, i.e. the Ca⁺⁺-binding helix-loop-helix structure, has been identified in numerous Ca⁺⁺-binding proteins (4, 21). The number of repetitive EF-hand motifs in protein molecules, regardless of whether or not they are capable of Ca⁺⁺ binding, ranges from two to eight (4). PEF proteins are unique in possessing five potential EF-hand motifs (EF-1–5) (3). Although all of the EF-5s of the identified members of the PEF protein family contain two-residue insertions in their potential Ca⁺⁺-binding loops and do not match the canonical EF-hand sequence exactly, they may form helix-loop-helix structures, as revealed on X-ray crystallographic analyses of calpain small subunits (5–7). The EF-5s of the calpain subunits function as dimerization sites. Although the dimerization sites have not been clarified yet, two other PEF protein family members, sorcin and granulin, have been shown to form homodimers (8, 9). In the present study, we investigated the properties of the newly discovered PEF protein family member, ALG-2, which was shown to be involved in apoptosis (1, 2).

Gel filtration analysis of the recombinant mouse ALG-2 suggested that it occurred as a monomeric form under the conditions used (Fig. 4). The native form of calpain is known to be composed of heterodimers of the large and small subunits with mutually homologous PEF domains (previously called CaM-like domains). Thus, there remains the possibility that ALG-2 forms a heterodimer with an as yet unknown cellular protein with a similar EF-5 sequence.

At high protein concentrations, ALG-2 was precipitated by Ca⁺⁺ whether or not it was in an unpurified or purified form (Figs. 2 and 5). The precipitation was not due to divalent ion bridges through Ca⁺⁺ but probably due to Ca⁺⁺-induced hydrophobic interactions among ALG-2 molecules: (i) non-ionic detergent Triton X-100 blocked the precipitation (Fig. 5), and (ii) Mg⁺⁺, which was not effective in inducing exposure of the hydrophobic surface(s), did not cause precipitation (Fig. 6 and data not shown). The adsorption of ALG-2 to plastic tubes in the presence of Ca⁺⁺ may also account for the detection of the unnegligible amount of ALG-2 in the pellet fraction at low ALG-2 concentrations (Fig. 5). Since the deletion mutant, ALG-2-ΔN23, was more soluble in the presence of high Ca⁺⁺, the N-terminal hydrophobic region may enhance Ca⁺⁺-dependent aggregation. At least two molar excess concentrations of Ca⁺⁺ are required to precipitate ALG-2 (Fig. 5B). The apparently lower concentration of Ca⁺⁺ derived from cells and the lysis buffer, however, was sufficient to precipitate ALG-2 in the crude E. coli cell lysate (30–60 μM ALG-2 in the lysate, estimated from the amount of the expression...
product). ALG-2 might interact with membrane proteins or membranes which reduce the required concentration of Ca\(^{2+}\) for hydrophobic interactions.

EF-hand proteins have been shown to expose hydrophobic surfaces in a Ca\(^{2+}\)-dependent manner (22, 23). TNS is a good hydrophobic probe for studying such Ca\(^{2+}\)-induced conformational changes of EF-hand proteins (24, 25). As revealed in the present study, ALG-2 also showed Ca\(^{2+}\)-dependent exposure of a hydrophobic surface(s) (Fig. 6). The similarity in the profiles of the Ca\(^{2+}\)-dependent TNS fluorescence enhancement between the wild type and mutant ALG-2 suggests that the PEF domain itself contains the TNS-interacting hydrophobic site whose formation is mediated by Ca\(^{2+}\). The observed Ca\(^{2+}\)-dependent conformational change, however, did not exactly correlate with the Ca\(^{2+}\)-dependent precipitation. The half maximal effect values of the Ca\(^{2+}\) concentrations required for the TNS-monitored conformational change (6 \(\mu\)M) and the precipitation (20 \(\mu\)M) were different for 1 \(\mu\)M ALG-2, and no precipitation was observed for mutant ALG-2-\(\Delta N23\). Moreover, the addition of TNS at least up to 1 mM did not inhibit Ca\(^{2+}\)-dependent precipitation (data not shown). Thus, Ca\(^{2+}\)-dependent hydrophobic sites (low-affinity TNS-binding, not observed under the present conditions) in addition to the N-terminal region might be important for the precipitation.

In the transfected COS-1 cells, ALG-2 was recovered in the particulate fraction (100,000 \(\times\) g pellet) regardless of the presence or absence of Ca\(^{2+}\) (Fig. 7), even in the presence of Triton X-100 (Fig. 8). In contrast, ALG-2 was recovered in the supernatant of the detergent-containing lysate on centrifugation at lower gravity (10,000 \(\times\) g) in the absence of Ca\(^{2+}\) (Fig. 8, lane 8), but recovered mostly in the pellet in the presence of Ca\(^{2+}\) (lane 9). Thus, the Ca\(^{2+}\)-binding protein may associate with Triton X-100 resistant macromolecules which aggregate in the presence of Ca\(^{2+}\). Alternatively, ALG-2 associated with 100,000 \(\times\) g precipitable macromolecules may bind to 10,000 \(\times\) g precipitable macromolecules in a Ca\(^{2+}\)-dependent manner. At present, we do not know what the Triton X-100 resistant macromolecules are, but they might be cytoskeletal proteins or associated proteins. A portion of ALG-2 was also detected in the precipitate at 600 \(\times\) g in the presence of Ca\(^{2+}\) but less in the absence of the ion (data not shown). In order to determine the exact subcellular localization of ALG-2 in untransfected normal cells, specific antibodies good enough for immunocytochemical studies are required. Unfortunately, unnegligible cross-reactions with cellular proteins occurred with the anti-mouse ALG-2 polyclonal antibodies prepared in the present study. The low titer of the antisera may be due to the high degree of homology among mammals (only two amino acid residues are different in the ALG-2 sequence between mouse and human) (Kawai et al., unpublished observation). Preparation of high-affinity specific polyclonal antibodies or mouse monoclonal antibodies against human ALG-2 would aid clarification of the subcellular localization of ALG-2.

EF-hand proteins are known to interact with cellular proteins in a Ca\(^{2+}\)-dependent manner (20, 21). The target proteins of calmodulin form basic amphiphilic \(\alpha\)-helices (26). In contrast, the PEF domains (previously termed CaM-like domains) of calpain subunits interact with the endogenous inhibitor protein calpastatins (27, 28), which form potentially acidic amphiphilic \(\alpha\)-helices (29). While sorcin has been shown to interact with the N-terminal domain of synexin (annexin VII) in a Ca\(^{2+}\)-dependent manner (30), it also associates with the cardiac ryanodine receptor in the absence of Ca\(^{2+}\) (31, 32), suggesting that the protein plays a role in Ca\(^{2+}\) mobilization as well as contributing to the multi-drug resistance of cancer cells (33). The purified recombinant ALG-2 will facilitate the finding of target cellular proteins of ALG-2 to elucidate its physiological function. The recombinant protein should also be useful for screening anti-apoptotic drugs which inhibit the Ca\(^{2+}\)-dependent hydrophobic exposure in vitro.

We wish to thank T. Kawai for the technical assistance.

REFERENCES

