Effect of Brefeldin A on Melatonin Secretion of Chick Pineal Cells

Tsuyoshi Hirota, Satoshi Kagiwada, Takaoki Kasahara, Toshiyuki Okano, Masayuki Murata, and Yoshitaka Fukada

Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033. CREST, Japan Science and Technology Corporation; and Laboratory of Ultrastructure Research, Department of Molecular Physiology, National Institute for Physiological Sciences, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585.

Melatonin is secreted from the pineal gland in a circadian manner. It is well established that the synthesis of melatonin shows a diurnal rhythm reflecting a daily change in serotonin N-acetyltransferase (NAT) activity, and the overall secretion of melatonin requires a cellular release process, which is poorly understood. To investigate the possible involvement of Golgi-derived vesicles in the release, we examined the effect of brefeldin A (BFA), a reversible inhibitor of Golgi-mediated secretion, on melatonin secretion of cultured chick pineal cells. We show here that treatment with BFA completely disassembles the Golgi apparatus and reduces melatonin secretion. In more detailed time course experiments, however, the inhibition of melatonin secretion is only observed after the removal of BFA in parallel with the reassembly of the Golgi apparatus. This inhibition of melatonin secretion is not accompanied by accumulation of melatonin in the cells. These observations indicate that chick pineal melatonin is released independently of the Golgi-derived vesicles, and suggest inhibition of melatonin synthesis after the removal of BFA. By measuring the activities and mRNA levels of melatonin-synthesizing enzymes, we found that the removal of BFA specifically inhibits NAT activity at the protein level. On the other hand, BFA causes no detectable phase-shift of the chick pineal oscillator regulating the circadian rhythm of melatonin secretion. The results presented here suggest that the Golgi-mediated vesicular transport is involved in neither the melatonin release nor the time-keeping mechanism of the circadian oscillator, but rather contributes to the regulation of NAT activity.

Key words: circadian rhythm, melatonin, pineal gland, secretion, serotonin N-acetyltransferase.

The pineal gland secretes (i.e., synthesizes and releases) melatonin in a daily rhythmic manner with a peak at night. The resulting diurnal rhythm in circulating melatonin acts as a hormonal signal of the day/night cycle and/or the photoperiod, and plays a central role in controlling circadian activity/rest cycles and seasonal breeding of various vertebrate species (1, 2). The rhythm of pineal melatonin synthesis is mainly due to a change in the activity of serotonin N-acetyltransferase (NAT; EC 2.3.1.87), which catalyzes the acetylation of serotonin (3, 4). Dispersed chick pineal cells in culture show a persistent circadian rhythm in both NAT activity and melatonin secretion even in constant darkness (5-7), indicating regulation by the circadian oscillator located in individual cells (8). Such intracellular regulation of the pineal melatonin rhythm in non-mammalian vertebrates is in contrast with that controlled by the central pacemaker located in the suprachiasmatic nuclei in mammals (9). In all species, however, it is poorly understood how melatonin is released from the pineal cells, and no direct evidence has been provided that the synthesis and release of cellular melatonin take place simultaneously. There are two possible mechanisms for the process of melatonin release. That is, melatonin synthesized in the pineal cells may be (i) stored in vesicles, which then fuse with the plasma membrane for the release (exocytosis), or (ii) released directly through the plasma membrane either actively via a specific transporter or passively by spontaneous diffusion. For example, serotonin, a precursor of melatonin, and other monoamines are taken up into secretory vesicles via vesicular monoamine transporters (10, 11), and then released through exocytosis (12).

A fungal metabolite brefeldin A (BFA), an inhibitor of
vesicle formation from the Golgi apparatus, is a very useful tool for investigating the vesicular transport via the Golgi apparatus. In a variety of cells, BFA accentuates the retrograde transport of the Golgi components (proteins and lipids) to the endoplasmic reticulum (ER), and as a consequence, the drug causes disassembly of the Golgi apparatus and hence inhibits protein secretion (13–15). Importantly, the effects of BFA on the Golgi structure and function are reversible. Upon removal of the drug from the culture medium, the intact Golgi apparatus is reconstructed (resembled) in the perinuclear region of BFA-treated cells and concomitantly the vesicular transport is restored, indicating that BFA induces transient perturbation of the Golgi apparatus without causing irreversible cellular damage.

In this study, we found that treatment of cultured chick pineal cells with BFA reduced melatonin secretion, but the reduction was not observed during the BFA treatment. Instead, the secretion was reduced just after the removal of BFA, and the temporal profile of its restoration was well correlated with the reassembly of the Golgi apparatus. Interestingly, the reduction in melatonin secretion after the removal of BFA was caused by inhibition of NAT activity. We conclude that, in chick pineal cells, (i) melatonin is released with no contribution of the Golgi-derived vesicles, and (ii) the removal of BFA reduces melatonin secretion by inhibiting NAT activity at the protein level.

MATERIALS AND METHODS

Materials—Defatted BSA, melatonin, N-acetylserotonin, and S-adenosyl-L-methionine were purchased from Sigma; brefeldin A, tryptamine, and acetyl-CoA from Wako Pure Chemical Industries; and BODIPY FL C12-ceramide from Molecular Probes. All other chemicals were of analytical grade and obtained from commercial sources.

Pineal Cell Culture—Animals were treated in accordance with the guidelines of The University of Tokyo and National Institute for Physiological Sciences. Newly hatched male chicks were purchased from local suppliers, and their pineal glands were isolated on the next day. The pineal cells were dispersed with the aid of nylon meshes (pore size, 100 μm), and then suspended for plating in Medium 199 (Life Technologies) supplemented with 10 mM HEPES-NaOH (pH 7.4), 100 μg/ml penicillin G (Biohitwittakar), 100 μg/ml streptomycin (Biohitwittakar), 0.25 μg/ml fungizone (Biohitwittakar), 3 μg/ml cytosine b-d-arabinofuranoside (Sigma), 10% fetal bovine serum (JRJ Biosciences), and 2.2 mg/ml NaHCO3. The cells from 4 pineal glands (approximately 2.4 × 106 cells) were plated onto a well of a 24-well plate, or those from 8 glands (approximately 4.8 × 106 cells) onto a 35-mm dish. The plated cells were cultured at 37°C under 95% air/5% CO2 in an incubator equipped with a fluorescent lamp (400 lux at dish level) and exposed to a 12-h light/dark cycle (LD cycle), where the 12-h light period acts as “day” and starts at zeitgeber time (ZT) 0, and the 12-h dark period acts as “night” and starts at ZT 12. The days in culture were numbered from the day of plating (day 1). In some experiments, the cells were kept in constant darkness from day 6. The culture media were exchanged at constant intervals (2–12 h, depending on the experiment), and the collected media were subjected to quantitation of the secreted melatonin (see below). All manipulations in the dark period were performed under infrared light (>800 nm) with the aid of dark field goggles (NEC).

BFA Treatment—BFA was dissolved in methanol (MeOH) and stored at −20°C as a stock solution (0.1 mg/ml). When applied to cells, BFA was diluted to 0.1 μg/ml with the medium. The dispersed chick pineal cells were incubated with the BFA-containing medium for a certain period (4–12 h), washed twice with fresh medium to remove BFA completely, and then cultured in the normal medium again.

Staining of the Golgi Apparatus with BODIPY-Ceramide—The Golgi stacks of living pineal cells were stained with BODIPY FL C12-ceramide (BODIPY-ceramide), a fluorescent lipid that specifically labels the Golgi apparatus in living cells (16). BODIPY-ceramide (50 nmol) was dissolved in 200 μl of ethanol and mixed with 10 ml of a serum-free medium containing defatted BSA (0.34 mg/ml), and then the mixture was dialyzed against the serum-free medium. The pineal cells plated on a 35-mm glass-bottom dish were incubated with the BODIPY-ceramide-defatted BSA complex (final 5 μM) for 30 min at 37°C. After being washed twice with fresh medium, the cells were observed under a fluorescence microscope, Axiovert (Carl Zeiss), using a fluorescence channel.

Quantitation of Melatonin—Melatonin in the collected medium was quantitated with a HPLC system, NanoSpace SI-1 (Shiseido), as described (17) with some modifications. Briefly, a 10–50 μl aliquot of the collected medium was injected for deproteinization into a MF Cartridge column (4.0 mm × 10 mm; Shiseido) at the flow rate of 500 μl/min, pre-equilibrated with Buffer P1 (100 mM sodium phosphate and 10 mM sodium L-octanesulfonate, pH 5.0). A delayed eluate containing melatonin was introduced into a Capcell Pak C18 UG120 5-μm guard column (2.0 mm × 35 mm; Shiseido) at the flow rate of 250 μl/min. The melatonin-containing fraction was eluted with Buffer F2 (100 mM sodium phosphate and 10 mM sodium L-octanesulfonate, pH 3.0) supplemented with 20% (v/v) acetonitrile, and then separated on a Capcell Pak C18 UG120 3-μm reverse phase analytical column (1.5 mm × 150 mm; Shiseido) at the flow rate of 100 μl/min. The cartridge column and analytical column were kept at 40°C. The fluorescence intensity of the final eluate was monitored continuously at excitation and emission wavelengths of 284 and 370 nm, respectively.

Melatonin that accumulated in the pineal cells was quantitated according to the method of Chin (18) with some modifications. That is, the pineal cells plated on a 35-mm dish were washed twice with PBS (10 mM phosphate containing 140 mM NaCl, 2.7 mM KCl, 0.9 mM CaCl2, and 0.5 mM MgCl2, pH 7.4) and then collected in the same solution. They were centrifuged at 20,000 × g for 1 min at 4°C, and then the cell pellet was stored at −80°C until use. The frozen cells were homogenized with 150 μl of 50 mM perchloric acid containing 0.74 mM cysteine hydrochloride and 0.32 mM disodium EDTA. Then, they were centrifuged at 20,000 × g for 10 min at 4°C, and 50 μl of the supernatant was analyzed using the HPLC system, as described above.

Measurement of Enzyme Activities—NAT activity of the pineal cell homogenate was estimated by measuring the amount of N-acetyltryptamine synthesized from exogenously added substrates, tryptamine and acetyl-CoA, according to the method of Tajardo et al. (19) with some modifications. Briefly, the pineal cells plated on a 35-mm dish were homogenized with 600 μl of ice-cold 250 mM potassium J. Biochem.
phosphate (pH 6.5) containing 1.4 mM acetyl-CoA, and then 120 µl of the homogenate was mixed with 40 µl of 8 mM tryptamine in 250 mM potassium phosphate (pH 6.5) for incubation at 37°C. After incubation for 10, 20, and 30 min, the reactions were stopped by mixing a 50-µl aliquot of each reaction mixture with 10 µl of 6 M perchloric acid. Then, the mixture was centrifuged at 20,000 × g for 10 min at 4°C, and the supernatant was subjected to the HPLC analysis of the N-acetyltryptamine content. The HPLC conditions were modified from those for melatonin analysis as follows; 20 µl of the supernatant was injected into the Capcell Pak C8 guard column (2.0 mm × 35 mm; Shiseido), and the N-acetyltryptamine-fraction-containing mixture was separated on the Capcell Pak C8, 3-µm reverse phase analytical column (1.5 mm × 150 mm; Shiseido) equilibrated with Buffer A (118 mM sodium acetate and 158 mM EDTA, pH 5.2) supplemented with 15% (v/v) acetonitrile at the flow rate of 100 µl/min. The wavelengths for fluorescence excitation and emission were 285 and 360 nm, respectively.

Hydroxyindole-O-methyltransferase (HIOMT; EC 2.1.1.4) activity of the pineal cell homogenate was estimated by measuring the amount of melatonin synthesized from exogenously added substrates, N-acetylserotonin (NAS) and S-adenosyl-l-methionine (SAM), according to the method of Itoh et al. (20) with some modifications. That is, the pineal cells plated on a 35-mm dish were homogenized with 300 µl of ice-cold 50 mM sodium phosphate (pH 7.9), and then 120 µl of the homogenate was mixed with 55 µl of 3.2 mM NAS and 0.32 mM SAM in 50 mM sodium phosphate (pH 7.9) for incubation at 37°C. After incubation for 10, 20, and 30 min, the reactions were stopped by mixing a 48-µl aliquot of each reaction mixture with 12 µl of 6 M perchloric acid. Then, the mixture was centrifuged at 20,000 × g for 10 min at 4°C, and 20 µl of the supernatant was subjected to the HPLC analysis of the melatonin content.

RT-PCR Analysis—The pineal cells plated on a 35-mm dish were washed twice with PBS +, homogenized with 1 ml of TRIZOL reagent (Life Technologies), and then stored at −80°C until use. According to the manufacturer's protocol, total RNA fractions were isolated from the homogenate and treated with DNase I (Takara Shuzo). Then, 0.8 µg of the total RNA was reverse transcribed with SUPERSCRIPT II (Life Technologies) at 42°C for 50 min using anchored (dT)25 primers. One-hundredth of the reaction mixture (0.2 µl) was subjected to PCR in a reaction mixture (25 µl) composed of 10 mM Tris-HCl (pH 8.3), 50 mM KCl, 1.5 mM MgCl2, 200 µM each of the dNTPs, 1 µM each of the gene specific primers, and 0.625 U AmpliTaq Gold (PE Biosystems). The primer pairs used were, 5′-ATGAGATCCGCCAATTCCCTAAC-3′ (forward) plus 5′-AATCCCTCGCACTGAGGACGAC-3′ (reverse) for chicken NAT (GenBank accession number; U46502), 5′-CCAATTACCGTCTACTTGCGTG-3′ (forward) plus 5′-TCTTCAACTTTGACCTCTCTCTG-3′ (reverse) for chicken HIOMT (X62309), and 5′-ACCAGTGGCATGACAGGTTGCTGTA-3′ (reverse) for chicken glyceraldehyde-3-phosphate dehydrogenase (GAPDH; K01458). Each thermal cycle comprised 94°C for 15 s, 55°C for 30 s and 72°C for 30 s, and the number of cycles was determined for each amplification reaction so as to maintain a linear correlation between the amplified products and the amounts of template DNA. The optimal cycle numbers for quantitative analysis were 24 for NAT, 23 for HIOMT, and 17 for GAPDH under the experimental conditions used. The PCR products were subjected to 6% polyacrylamide gel electrophoresis, stained with SYBR Green I (Molecular Probes), and then detected with an image analyzer FLA-2000 (Fuji Film). The amounts of the products with the predicted sizes were quantitated with MacBAS software (Fuji Film).

RESULTS

Disruption of the Golgi Apparatus by BFA—As described in previous reports (5–7), dispersed chick pineal cells comprised two types of cells after several days in culture; one is small round cells (approximately 10 µm in diameter) and the other is fibroblasts, the former of which are melatonin-secreting pinealocytes (21). We examined the effect of BFA on the morphology of the Golgi apparatus in the pinealocytes by using BODIPY-ceramide, a lipid marker of Golgi membranes, under a fluorescence microscope. In the absence of BFA, BODIPY-ceramide brightly stained the perinuclear structure, a typical construction of the Golgi apparatus. The morphology of the Golgi apparatus did not change significantly between in the daytime (ZT 6, Fig. 1a) and in the nighttime (ZT 18, Fig. 1b). Upon exposure of the cells to 0.1 µg/ml BFA from ZT 6, the Golgi apparatus began to disassemble within 1 h (Fig. 1c), and was completely dispersed throughout the cytoplasm within 2 h (Fig. 1d). This dispersed state continued for 6 h in the presence of BFA (Fig. 1e). Similar changes were observed with 5 µg/ml BFA-treatment (data not shown), and hence the lower dose (0.1 µg/ml) was used in subsequent experiments. Compared with chick pineal fibroblasts, whose Golgi apparatus was disrupted by BFA within 30 min (data not shown), the complete disassembly of the Golgi apparatus in the chick pinealocytes was relatively slow. Such a delayed response to BFA has also been reported for a primary culture of rat pinealocytes.
adrenal chromaffin cells (22). Thus, the difference in responsiveness to BFA may depend on the cell type.

Transient Reduction in Nocturnal Melatonin Secretion Caused by Removal of BFA—We next examined the effect of BFA on melatonin secretion from pineal cells into the medium. In this article, we use the term “secretion” for a process composed of “synthesis” and “release.” To evaluate the phase-dependent effect of BFA treatment, cultured chick pineal cells were subjected to BFA at four different phases. That is, the cells were treated with BFA or MeOH (control) on day 6 at ZT 0–6/ZT 6–12 (when melatonin secretion is low) or ZT 12–18/ZT 18–24 (when melatonin secretion is high), and then the melatonin secreted into the medium was quantitated (Fig. 2, a–d). The 6-h treatment with BFA in the afternoon (ZT 6–12, Fig. 2b) and early at night (ZT 12–18, Fig. 2c) reduced the subsequent nocturnal melatonin secretion by 36% and 26% of the control value, respectively, and on the next day (day 7), the level of nocturnal melatonin secretion returned to the control value. In contrast, similar BFA treatment in the morning (ZT 0–6, Fig. 2a) or late at night (ZT 18–24, Fig. 2d) had little or no effect on the secretion. These results, particularly the lack of an evident effect of BFA applied late at night (Fig. 2d), suggested that the transient reduction in nocturnal melatonin secretion occurs after the removal of BFA rather than during the treatment.

The possibility described above was examined by measuring melatonin secretion at 2-h intervals during and after 6-h BFA treatment (Fig. 3, a and b). When the cells were treated with BFA at ZT 12–18 on day 6 (Fig. 3a, squares), melatonin secretion was not affected during the treatment but decreased just after the removal of BFA, as compared with the control values (MeOH-treated cells; Fig. 3a, circles). Prolonged exposure to BFA (i.e., without removal of BFA at ZT 18) also reduced melatonin secretion (Fig. 3a, triangles), but the inhibitory effect was delayed and smaller than that in the case of removal of BFA (Fig. 3a, squares). Clearly, the reduction in melatonin secretion caused by 6-h BFA treatment (Fig. 2c) is mainly ascribable to the effect of removal of BFA. A similar or more pronounced effect was observed when the cells were treated with BFA at ZT 6–12 (Fig. 3b). The removal of BFA remarkably suppressed the nocturnal increase in melatonin secretion for 4 h (until ZT 16), followed by a delayed increase thereafter (Fig. 3b, squares). In contrast, the prolonged treatment had no effect on the initial increase in nocturnal melatonin secretion (until ZT 14), although marked inhibition was observed in a later period (Fig. 3b, triangles). With respect to the morphological change of the Golgi apparatus, we observed the disrupted state at 4 h after the removal of BFA at ZT 12 (ZT 16, Fig. 3c), but the dispersed Golgi membranes migrated to the perinuclear region within 6 h (ZT 18, Fig. 3d) and reassembled to show an intact morphology within 8 h (ZT 20, Fig. 3e). It is noteworthy that this time course of reassembly of the Golgi apparatus correlated well with the gradual increase in melatonin secretion (i.e., delayed recovery) after 6-h BFA treatment (Fig. 3b, squares).

Inhibition of NAT Activity Caused by Removal of BFA—To determine which process of melatonin secretion (i.e., synthesis or release) is inhibited after the removal of BFA, the cellular melatonin contents were compared between BFA-treated and control (MeOH-treated) cells. After 6-h treatment with BFA or MeOH (at ZT 6–12 or ZT 12–18), the cells were incubated in the presence of 100 μM eserine, an inhibitor of melatonin deacetylase (23), to prevent the degradation of melatonin. Then, the media and cells were collected separately at ZT 23.5, the end of the dark period, for quantitation of the melatonin content. It was confirmed that, even in the presence of eserine, the amount of melatonin secreted into the medium was markedly reduced after...
6-h BFA treatment at the two different phases (Table I, Secreted). Under the conditions used, however, elevated accumulation of cellular melatonin was not observed irrespective of the BFA treatment (Table I, Cellular), suggesting that the removal of BFA inhibits melatonin synthesis rather than its release.

Melatonin is synthesized from serotonin through a two-step enzymatic process sequentially catalyzed by serotonin N-acetyltransferase (NAT) and hydroxyindole-O-methyltransferase (HIOMT), the former of which is a key enzyme responsible for the nocturnal increase in pineal melatonin (24). To investigate the effect of the removal of BFA on the activities of these enzymes, cultured pineal cells were treated with BFA at ZT 12–18 and collected for analyses just before (ZT 18) and 2 h after (ZT 20) its removal. Consistent with previous reports (4, 25), the NAT activity level in the cell homogenate prepared at ZT 18 in the nighttime was about 10-fold higher than that at ZT 6 in the daytime (Fig. 4a, open bars), whereas the level of HIOMT activity at ZT 18 was similar to that at ZT 6 (Fig. 4b, open bars). Exposure of the cells to BFA from ZT 12 reduced the NAT activity by 38% at ZT 18 or by 45% at ZT 20 of the control (MeOH-treated) value (Fig. 4a, compare the shaded and filled bars for ZT 18 or ZT 20, respectively). Importantly, the removal of BFA further reduced the NAT activity by 35% (compare the hatched bar with the filled bar at ZT 20). In contrast, the administration and removal of BFA had almost no effect on the HIOMT activity (Fig. 4b). These results, together with the finding that melatonin did not accumulate in the cells (Table I), indicate that the reduction in melatonin secretion caused by the removal of BFA (Fig. 3a) is predominantly attributable to the inhibition of NAT activity. BFA seems to have dual effects on NAT activ-

![Fig. 3. Effects of removal of BFA on melatonin secretion and on the morphology of the Golgi apparatus. (a, b) Effects of the administration and removal of BFA on melatonin secretion. Chick pineal cells were cultured in LD cycles (white and black bars at the bottom), and the media were exchanged at 2-h intervals on day 6. (a) Cells were treated with 0.1% MeOH at ZT 12–24 (circles), with 0.1 μg/ml BFA in 0.1% MeOH at ZT 12–24 (triangles), or with BFA at ZT 12–18 and then with MeOH at ZT 18–24 (squares). (b) Cells were treated with MeOH at ZT 6–24 (circles), with BFA at ZT 6–24 (triangles), or with BFA at ZT 6–12 and then with MeOH at ZT 12–24 (squares). All the melatonin content values for the collected media were expressed relative to the mean value for melatonin secreted on day 5 and plotted at the time when the media were collected. The data are the means ± SEM (bars) values of three independent cultures. p < 0.01, compared with the circle; **p < 0.01, compared with the triangle by Student’s t test. (c–e) The time course of the reassembly of the Golgi apparatus after the removal of BFA. Cells were treated with BFA for 6 h (ZT 6–12) on day 6, stained with BODIPY-ceramide at ZT 10, and then washed twice with fresh medium to remove BFA at ZT 12. Then the cells were incubated in the normal medium for 4 h (ZT 16, c), 6 h (ZT 18, d), or 8 h (ZT 20, e). Bar (in panel c), 10 μm.

![Graphical representation of Fig. 3](image)

![Table I. Effect of BFA on the cellular content of melatonin.](image)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Cellular (at ZT 23.5)</th>
<th>Secreted (ZT 12-23.5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZT 6-12</td>
<td>0.071 ± 0.006</td>
<td>182.6 ± 1.2</td>
</tr>
<tr>
<td>Control</td>
<td>0.064 ± 0.011</td>
<td>95.7 ± 4.3†</td>
</tr>
<tr>
<td>BFA</td>
<td>0.074 ± 0.012</td>
<td>190.9 ± 14.2</td>
</tr>
<tr>
<td>ZT 12-18</td>
<td>0.062 ± 0.002</td>
<td>132.5 ± 2.0†</td>
</tr>
</tbody>
</table>

†p < 0.02, compared with the control value by Student’s t test.

Vol. 129, No. 1, 2001
Fig. 4. Effects of BFA on the activities of NAT and HIOMT. Chick pineal cells were cultured in LD cycles for 5 days and subsequently cultured in the normal medium (−, open bars), or treated with 0.1% MeOH (M) from ZT 12 (shaded bars), with 0.1 μg/ml BFA (in 0.1% MeOH, B) from ZT 12 (filled bars), or with BFA at ZT 12–18 and then with MeOH at ZT 18–20 (hatched bars) on day 6. They were collected to prepare cell homogenates at ZT 6, ZT 18, or ZT 20, as indicated at the bottom, followed by measurement of the activity of NAT (a) or HIOMT (b). The data are the means ± SEM (bars) values of three independent samples. p < 0.02, compared with the shaded bar; *p < 0.02, compared with the filled bar by Student’s t test.

Effect of BFA on NAT mRNA Level—Next, by means of quantitative RT-PCR analysis, we investigated the mRNA levels of NAT, HIOMT, and GAPDH in pineal cells, which were cultured under the same conditions as described in the legend to Fig. 4. As reported previously (25, 26), the amount of NAT mRNA at ZT 18 in the nighttime was much higher (about 3-fold) than that at ZT 6 in the daytime (Fig. 5a, open bars), and conversely the amount of HIOMT mRNA at ZT 6 was about 3-fold higher than that at ZT 18 (Fig. 5b, open bars). Under the conditions used, the amount of GAPDH mRNA remained almost unchanged (Fig. 5c, open bars).

Exposure of the cells to BFA from ZT 12 decreased the amount of NAT mRNA by 53% at ZT 18 or by 60% at ZT 20 of the control (MeOH-treated) value (Fig. 5a, compare the shaded and filled bars for ZT 18 or ZT 20, respectively). The removal of BFA, however, had no further effect on the amount of NAT mRNA (Fig. 5b). Similarly, the administration of BFA decreased the amounts of HIOMT mRNA (Fig. 5b) and GAPDH mRNA (Fig. 5c), and its removal caused no further decrease. Thus, the BFA treatment decreased the amounts of all the mRNAs examined here, but its removal had no further effect.

Effect of BFA on the Pineal Circadian Oscillator—The BFA-dependent decreases in the amounts of various mRNAs (Fig. 5) raised the possibility that the BFA treatment shifts the phase of the circadian oscillator in chick pineal cells. This is because the molecular machinery of the circadian oscillator is generally considered to contain a negative feedback loop based on the transcription and translation of clock genes (27). We investigated whether or not 4-h treatment with BFA for various time periods within a day shifts the phase of the free-running rhythm of melatonin secretion in constant darkness (Fig. 6, a–f). BFA treatment
Fig. 6. Effect of BFA on the circadian rhythm of melatonin secretion. Chick pineal cells were cultured in LD cycles (white and black bars at the bottom) for 5 days and then transferred to constant darkness. The media were exchanged at 4-h intervals. The cells were treated with 0.1 μg/ml BFA (closed circles) for 4h at ZT 12-16 (a), ZT 16-20 (b), ZT 20-24 (c), ZT 0-4 (d), ZT 4-8 (e), or ZT 8-12 (f), the period of which is depicted by a gray bar in each panel. Control data for cells not treated with BFA are indicated by open circles. All the melatonin content values for the collected media were expressed relative to the mean value for melatonin secreted on day 4 and plotted at the time when the media were collected. The data are the means ± SEM (bars) values of three independent cultures.

at ZT 12-16 (Fig. 6a), ZT 4-8 (Fig. 6e), or ZT 8-12 (Fig. 6f) induced a transient reduction in melatonin secretion after removal of BFA, this being consistent with the time-of-day-specific effect of the drug shown in Fig. 2 (i.e., effective from the afternoon to early night). Despite such a clear acute effect of BFA, there was no significant phase-shift of the circadian rhythm of melatonin secretion between BFA-treated and non-treated cells (Fig. 6, a-f). We concluded that the phase of the chick pineal circadian oscillator is unaffected by BFA treatment given at any time of the day.

DISCUSSION

Mechanism of Melatonin Release from Chick Pineal Cells—In the present study, the relation between chick pineal melatonin release and vesicular transport via the Golgi apparatus was investigated by using a fungal metabolite BFA, an inhibitor of Golgi-mediated secretion. We demonstrated that BFA disrupted the Golgi apparatus of chick pinealocytes (Fig. 1) and reduced melatonin secretion (Fig. 2). It should be emphasized that, although the Golgi apparatus was completely disrupted in the BFA-treated cells (Fig. 1), melatonin secretion was not affected during the 6-h treatment with BFA (Fig. 3, a and b). Moreover, no significant amount of melatonin was accumulated not only in the BFA-treated cells but also in the control cells (Table 1), indicating the absence of cellular machinery for storing melatonin in chick pineal cells. Taken together, these results first demonstrate that, unlike other amine hormones, chick pineal melatonin could be released independently of the Golgi-derived secretory vesicles. Since melatonin is a rather hydrophobic compound, it may possibly diffuse in and pass through the plasma membrane passively. Alternatively, synthesized melatonin might be released actively by a specific transporter through the plasma membrane or by a Golgi-independent exocytotic pathway. These possibilities have not been evaluated properly so far.

Effect of BFA on Melatonin Synthesis—Although the Golgi-derived vesicles were not involved directly in the pineal melatonin release, melatonin secretion was reduced by treatment with BFA. An unexpected finding in this study was that the removal of BFA reduced melatonin secretion (Fig. 3, a and b). The lack of accumulation of cellular melatonin after the removal of BFA (Table 1) suggested inhibition of melatonin synthesis, and in fact we found a stepwise decrease in NAT activity not only during but also after BFA treatment (Fig. 4a). These two effects are discussed separately below.

First, the inhibition of NAT activity during the BFA treatment (Fig. 4a) can be ascribed to the decrease in its mRNA level (Fig. 5a). Because the turnover of the NAT protein is very fast (within a few minutes, 28), the decrease in its mRNA level may cause acute reduction of its activity due to the reduced supply of newly synthesized proteins. In contrast, HIOMT is a highly stable protein (>24 h, 29). Therefore, its activity did not decrease during the BFA treatment (Fig. 4b), even when its mRNA level was decreased (Fig. 5b). Although NAT is thought to be the rate-limiting enzyme in pineal melatonin biosynthesis (24), we found that the reduction in NAT activity (Fig. 4a) induced no change in melatonin secretion during 6-h treatment with BFA (Fig. 3a). A possible explanation for this is that at midnight when the NAT activity reaches a peak level, the amount of NAT substrate (i.e., serotonin) limits the rate of melatonin biosynthesis. This idea is based on the observation that prolonged BFA treatment starting at ZT 12 (Fig. 3a, triangles) had an inhibitory effect on melatonin secretion only after the peak of NAT activity at midnight. On the other hand, the effect of the prolonged treatment was more pronounced when BFA was administered from ZT 6 (Fig. 3b, triangles). This is possibly because melatonin synthesis is limited by NAT activity from the afternoon, and hence the subsequent increase in melatonin secretion at night should be markedly reduced due to the lowered levels of NAT mRNA and activity. In fact, it was reported that daytime treatment with inhibitors of RNA synthesis blocks the nocturnal increase in melatonin secretion more effec-
tively than nighttime treatment, and these inhibitors have only minor effects on melatonin secretion during the treat-
ment (21).

Second, the after-effect of treatment with BFA on melato-
nin secretion is distinguishable from the effect of prolonged treatment, in that the former had a stronger and more
acute inhibitory effect than the latter (Fig. 3, a and b). This
is attributable to additional inhibition of the NAT activity
caused by the removal of BFA (Fig. 4a). It should be
stressed that the inhibition was not accompanied by a fur-
ther decrease in the mRNA level (Fig. 5a), indicating regu-
lation of NAT activity at the protein level. Even after the
translation, the pinel NAT activity is regulated by several
mechanisms, such as protein thiol-disulfide exchange (30,
31), proteasomal proteolysis (32), and phosphorylation by
protein kinase A (33). The apparent coincidence in time
course between the restoration of melatonin secretion (Fig.
3b) and the reassembly of the Golgi morphology (Fig. 3, c–
e) after the removal of BFA suggests a possible linkage be-
 tween one or some of the mechanisms responsible for the
post-translational regulation of NAT activity and the ac-
tivation of ER-to-Golgi transport.

No Direct Linkage between the Golgi Apparatus and the
Circadian Oscillator—BFA treatment for 4 h (Fig. 6) or for
12 h (data not shown) caused no detectable phase-shift of
the chick pineal oscillator regulating the circadian rhythm
of melatonin secretion, while the Golgi apparatus was com-
pletely disrupted by BFA treatment (Fig. 1). This indicates
that the time-keeping mechanism of the oscillator is in-
dependent of the Golgi apparatus. Considering that an inhi-
 bitor of protein synthesis shifts the phase of the oscillator
(21), we conclude that the Golgi-dependent vesicular trans-
port of synthesized proteins is not involved in the oscillator
system. Consistently, all known clock components are cyto-
solic/nuclear proteins (27).

It is proposed that the clock components constitute a
transcription/translation-based negative feedback loop (27).
For instance, the transcription of *Drosophila* clock genes
per and *tim* is inhibited by a combination of PER and TIM
proteins, thus generating fluctuations in the amounts of
their mRNAs and proteins (34). Recently, mammalian and
avian homologues of *per* gene were identified, and their
mRNA levels were shown to fluctuate in a circadian man-
ner (35–42). In this study, we found that BFA treatment
lowered the mRNA levels of proteins such as NAT, HIOMT,
GAPDH (Fig. 5), and pinopsin (43, data not shown) to vari-
dious degrees, whereas the drug had no effect on the oscilla-
 tor (Fig. 6). This suggests that the effect of BFA on mRNA
levels is restricted to certain genes, or that a transient de-
crease in the mRNA levels of chick clock genes does not af-
fect the central oscillator mechanism of pineal cells.

In general, the Golgi apparatus plays a very important
role in various cellular functions, such as the glycosylation,
sorting, and transport of synthesized proteins/lipids, and
the secretion of bioactive compounds. In chick pineal cells,
however, it is unlikely that the Golgi-dependent vesicular
transport plays a role in the melatonin release. The results
presented here rather suggest a linkage between the reas-
sembly of the Golgi apparatus and regulation of NAT activ-
ity at the protein level. BFA has been widely used as a
highly specific blocker of Golgi functions, but it should be
noted that BFA may have an effect on mRNA levels
through an unidentified mechanism.

We wish to thank Dr. Kamon Sanada and Mr. Yuichiro Hayashi for
the technical advice regarding chick pineal cell culture and melat-
onin quantitation. We also thank Mr. Masao Doi for the technical
advice regarding RT-PCR analysis.

REFERENCES

1. Cassone, V.M. (1990) Effects of melatonin on vertebrate circa-

onin: a coordinating signal for mammalian reproduction? *Sci-
cence* 227, 714–720

pineal gland: a circadian rhythm in N-acetyltransferase. *Sci-
ceence* 169, 1093–1095

4. Binkley, S., MacBride, S.F., Klein, D.C., and Ralph, C.L. (1973)
Pinel enzymes: regulation of avian melatonin synthesis. *Sci-
cence* 181, 273–275

5. Deguchi, T. (1979) A circadian oscillator in cultured cells of

cell culture. I. Oscillation of melatonin release from dissociated
chick pineal cells in flow-through microcarrier culture. *J.
Neurosci.* 8, 12–21

transduction in cultured chick pineal cells: effects of light, dark,
and potassium on the melatonin rhythm. *Brain Res.* 438, 199–
215

8. Nakahara, K., Murakami, N., Nasu, T., Kuroda, H., and Mur-
akami, T. (1997) Individual pineal cells in chick possess photore-
ceptive, circadian clock and melatonin-synthesizing capacities
in vitro. *Brain Res.* 774, 242–245

cloning of a reserpine-sensitive vesicular monoamine

11. Liu, Y., Peter, D., Roghani, A., Schuldiner, S., Prive, G.G., Eisen-
berg, D., Brehm, N., and Edwards, R.H. (1992) A cDNA that
suppresses MPP" toxicity encodes a vesicular amine trans-
porter. *Cell* 70, 539–551

12. Moriyama, Y., Yamaamoto, A., Yamada, H., Tashiro, Y., and
Futai, M. (1996) Role of endocrine cell microvesicles in inter-
cellular chemical transduction. *Biol. Chem. Hoppe Seyler* 377,
157–165

(1988) Brefeldin A causes disassembly of the Golgi complex and
accumulation of secretory proteins in the endoplasmic reticu-
lon. *J. Biol. Chem.* 263, 18545–18552

14. Lippincott-Schwartz, J., Yuan, L.C., Bonifacino, J.S., and Klaus-
ner, R.D. (1989) Rapid redistribution of Golgi proteins into the
ER in cells treated with brefeldin A: evidence for membrane
eycling from Golgi to ER. *Cell* 56, 801–813

ge of being uncompetitive. *Cell* 97, 153–155

(1991) A novel fluorescent ceramide analogue for studying
membrane traffic in animal cells: accumulation at the Golgi
complex. *Science* 253, 1854–18552

17. Sánchez, K., Hayashi, Y., Harada, Y., Okano, T., and Fukuda, Y.
(2000) Role of circadian activation of mitogen-activated protein
kinase in chick pineal clock oscillation. *J. Neurosci.* 20, 986–991

18. Chin, J.R.L. (1990) Determination of six indolic compounds,
including melatonin, in rat pineal gland using high-performance
liquid chromatography with serial fluorimetric-electrochemical
detection. *J. Chromatogr.* 528, 111–121

kinetic properties of serotonin-N-acetyltransferase in bovine
pineal gland using HPLC with fluorometric detection. *J. Pineal
Res.* 13, 80–84

