bioimages
Print ISSN : 0919-2719
Regular Article
Intracellular calcium dynamics and expression of P2Y and IP3 receptors in a cycling G1-phase cell
Gabriel J. MchondeYoh-ichi SatohShinji YasuhiraChihaya MaesawaTomoyuki Saino
Author information
JOURNAL FREE ACCESS

2016 Volume 24 Pages 13-29

Details
Abstract

The regulation of intracellular events is of critical importance in proliferating cells. These events may be altered by signaling molecules linked through cell-cycle regulatory mechanisms. Recent advances have linked the calcium ion (Ca2+) with the progression of the cell cycle through interphase and the different phases of mitosis. However, there has been little explanation on the fundamental relationship of calcium signals and their associated receptors with the interphase subphases. In the present study, to clarify this possible relationship, we investigated how calcium signaling and its associated purinergic receptors are related to the cell cycle between the nucleoplasm and cytoplasm in cultured G1-interphase cells of HeLa.S-Fucci2 and fucci/mouse fibroblasts. Ratiometric fluorescence and reverse transcriptase polymerase chain reaction (RT-PCR) techniques were employed to assess the intracellular Ca2+ concentrations ([Ca2+]i) and the expression of purinergic and inositol trisphosphate receptors, respectively. The results obtained revealed the existence of two distinct subcellular increases in [Ca2+]i in a single individual G1-phase cell, suggesting variations between the early and late G1-phases of the cell cycle. In addition to the Ca2+ wave, the RT-PCR results indicated variability in the purinergic receptors and inositol 1,4,5-trisphosphate receptor subtypes within G1-phase cells. Based on these results, we propose that receptor expression and calcium signals are functionally distinct within individual interphase subphases.

Content from these authors
© Bioimaging Society
Previous article
feedback
Top