Pancreatic O⁶-Methylguanine DNA Methyltransferase Level in Streptozotocin-Induced Diabetic Rats

Yıldız Dincer¹, Uluk Çakatay², Refik Kayali³, İlker A. Yilmaz⁴, Ayşegül Telci⁵, Nilgün Çelebi⁶, Hüsrev Hâtem⁶, Nazif Bağrıaçık⁶ and Tulay Akçay¹

¹Istanbul University, Cerrahpaşa Medical Faculty, Department of Biochemistry, Istanbul, 34300-Turkey.
²Istanbul University Medical School, Central Laboratory of Clinical Biochemistry, Çapa, Istanbul, 34390-Turkey.
³Çekmece Nuclear Research Center, Istanbul 34461-Turkey.
⁴Istanbul University, Cerrahpaşa Medical Faculty, Department of Endocrine and Metabolism, Istanbul, 34300-Turkey.

(Received 20 December 2003; and accepted 24 December 2003)

ABSTRACT

O⁶-methylguanine which is formed in cellular DNA by alkylating agents is a toxic and mutagenic lesion. O⁶-methylguanine is repaired by DNA repair protein, O⁶-methylguanine DNA methyltransferase. Deficient repair of O⁶-methylguanine has been suggested to be a contributory factor in the etiology of some diseases. Streptozotocin (SZ) is an alkylating compound that is often used to induce diabetes in experimental animals. We aimed to determine O⁶-methylguanine DNA methyltransferase level in pancreas of SZ-induced diabetic rats. Serum levels of glucose and fructosamine, and pancreatic O⁶-methylguanine DNA methyltransferase level were measured in the streptozotocin-induced diabetic and control rats. Serum glucose and fructosamine levels were found to be higher in the diabetic group than those in the control group (P<0.001 and P<0.001, respectively). Pancreatic O⁶-methylguanine DNA methyltransferase level was lower in the diabetic group (68.06±12.37 fmol/mg protein) than in the control group (89.45±13.83 fmol/mg protein), (P<0.01) and there was a negative correlation between serum fructosamine level and pancreatic O⁶-methylguanine DNA methyltransferase level (r: −0.6, P<0.02). These data imply that O⁶-methylguanine DNA methyltransferase depletion may be one of the mechanisms for diabetogenic action of SZ in rats.

SZ, an antibiotic isolated from streptomyces acheromogenes, is widely used for the induction of diabetes in experimental animals, due to damaging action on the pancreatic β cells which causes cell death (28). Damage to DNA of pancreas β-cells by SZ is caused by known two major pathways. The first one arising from the NAD⁺ depleting action of SZ. SZ induces DNA strand breakage in β-cells (29, 16). Excessive DNA strand breakage activates poly-(ADP-ribose) polymerase (PARP, EC 2.4.2.30) in pancreatic cells which leads to NAD⁺ depletion by catalyzing the formation of poly-(ADP-ribose) from NAD⁺ (29, 26). NAD⁺ is an important cofactor in energy metabolism, and its depletion results in lower ATP production. Thus cells can die from energy loss (32). The other arises from radical metabolites of SZ (23). Methyl carbonium ion, which is produced from the methylated nitrosourea moiety during decomposition of SZ may damage DNA by alkylation (1, 15). Alkylating agents lead to DNA damage by transferring alkyl group to DNA bases. They react at many sites in DNA, predominantly producing 7-methylguanine, 3-methyladenine, and O⁶-methylguanine (O⁶-MG). The most harmful lesion is O⁶-MG because of its toxicity and mutagenicity. O⁶-MG adducts on DNA lead to the formation

*Correspondence to: Yıldız Dincer, Cebesoy Sok., Eko Tek, B Blok No: 5/3 Sahrayı Cedit, Erenköy, İstanbul - Turkey
Tel: +90 216 3857508, Fax: +90 212 2726730
E-mail: stare63@yahoo.com
of stable cytotoxic DNA crosslinks. Therefore methylation of guanines by SZ induces apoptosis in cells (23). Moreover, O6-MG pairs with thymine, in addition to cytidine, during DNA replication, causing G \(\rightarrow \) C \(\rightarrow \) A \(\rightarrow \) T transition mutation (13). O6-MG is repaired in mammalian cells by O6-methylguanine DNA methyltransferase O6-MGMT (E.C. 2.1.1.63), a DNA repair enzyme. The methyl group at the O-6 position of guanine is transferred irreversibly to a cysteine residue within O6-MGMT, thus inactivating the enzyme (25). Restoration of native O6-MGMT requires de-novo protein synthesis. Therefore, in absence of new O6-MGMT synthesis, a cell contains a finite capacity for removal of O6-MG by O6-MGMT (19). Defective repair of O6-MG has been shown in the etiology of some diseases (11, 9). The purpose of the present study was to determine pancreatic O6-MGMT level in SZ-induced diabetic rats, therefore to examine whether O6-MGMT plays a role on the development of experimental diabetes.

MATERIAL AND METHODS

Male Wistar rats with a mean weight of 230 g, aged 8 weeks, and supplied by Center for Experimental and Applied Medical Research, University of Istanbul, Turkey were used in this study. Animals were housed in conventional wire-mesh cages, and were fed a standard laboratory diet. Rats were randomly divided into two groups. Diabetes was induced by using a single intravenous injection of 60 mg/kg body weight SZ (Sigma, St Louis, MO USA), (n: 17). Rats not pretreated with SZ, which formed the control group (n: 14), were given only saline by intravenous route. After 5 weeks, rats were sacrificed under ether anaesthesia and their blood were collected for the colorimetric measurement of serum glucose and fructosamine levels on the DAX-72 discrete auto analyzer. The results were used as an indication of diabetes. Pancreas was removed and chilled immediately. An aliquot of the pancreas was rinsed and homogenized in three volumes of ice-cold buffer composed of 50mM Tris (pH 7.5), 1 mM EDTA, 10mM DTT, 0.2% Triton X-100, followed by centrifugation at 12000 \(\times \) g for 10 min at 4\(^{\circ}\) C. Supernatant was used as cellular extract containing enzyme activity. O6-MGMT level was assayed by measuring the disappearance of O6-methyl guanine from methylated DNA (3). Alkylated micrococcus lysodeikiticus DNA by \(^{3} \)H-methyl nitrosourea was used as substrate for O6-MGMT. O6-MGMT activity was measured by scintillation counting. Results were expressed as femtomol CH\(_{3} \) removed from DNA per mg protein (finomol/mg protein). Protein concentration of homogenate was measured with the folin phenol reagent (17).

Significant differences between two groups were carried out by using the Non-parametric Mann-Whitney U test. Data are given mean \(\pm \) SD. When not specified, \(P<0.05 \) was considered significant. Correlation analysis was performed by using Spearman correlation coefficient.

RESULTS

Serum glucose and fructosamine levels of the both groups are given in Table 1. Serum glucose \((P<0.001) \) and fructosamine \((P<0.001) \) levels in diabetic rats were higher than those in the control group. Pancreatic O6-MGMT level was determined in 17 diabetic and 14 non-diabetic rats. O6-MGMT level in the diabetic group was significantly lower than in the control group \((P<0.02) \) (Fig. 1). There was a significant negative correlation between pancreatic O6-MGMT level and serum fructosamine level \((r: -0.6, P<0.02) \).

<table>
<thead>
<tr>
<th>Serum glucose (\text{nmol/L})</th>
<th>Control group (\text{n:14})</th>
<th>Diabetic group (\text{n:17})</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.83 (\pm) 1.75</td>
<td>26.88 (\pm) 6.00*</td>
<td></td>
</tr>
<tr>
<td>Serum fructosamine (\text{nmol/L})</td>
<td>1.05 (\pm) 0.07</td>
<td>2.50 (\pm) 0.74*</td>
</tr>
</tbody>
</table>

* \(P<0.001 \) versus Control group.

Fig. 1 Pancreatic O6-MGMT level of control and diabetic rats.
DISCUSSION

SZ exerts its diabetogenic action by different mechanisms simultaneously. NAD-depleting action of SZ on the β cells is well documented and has led to the suggestion that low intracellular levels of NAD⁺ cause severe lesions of pancreatic cell metabolism leading to cell death (29, 25, 23). On the other hand, SZ is a strong alkylating agent. In an early study, it was observed that following administration of SZ, labelled in the methyl group, the radioactivity preferentially accumulated in the pancreas and in association with nucleic acids (1, 21). Recently Murata et al. (23) suggested that SZ induces DNA damage by methylation of guanine via methyl cations and, this alkylation may be responsible for triggering apoptosis and subsequently diabetes. Nelson et al. (24) was determined increased O⁴-MGMT mRNA level in cultured E cells within 12–24 h after the treatment with methylisourea, an alkylating agent, but no increase in O⁴-MGMT level was observed 24 or 48 h after exposure. They suggested that newly formed O⁴-MGMT may have been consumed in the repair process very rapidly, thus no increase in O⁴-MGMT level was found. As far as we know, there is no report examining O⁴-MGMT level in the pancreas of SZ-induced diabetic rats. In the present study O⁴-MGMT level was found to be lower in the diabetic rats than in the controls. This was a preliminary study for repair of O⁴-MG in diabetic rats. Determined decrease in the present study can be evaluated as a result of the consumption of O⁴-MGMT for repair of O⁴-MG adducts on DNA formed by methyl carbonium ions derived from SZ. However, inactivation of O⁴-MGMT gene by promoter hypermethylation has been shown (7). β cells contain a finite level of O⁴-MGMT might be more susceptible to SZ when O⁴-MGMT is completely depleted due to increased consumption and/or gene inactivation.

Other alkylation products, 7-methylguanine and 3-methyladenine, are just toxic lesions. They have no mutagenic capacity, and are removed by alkylpurine-DNA-N-glycosylase (APNG), leaving and apurinic/pyrimidinic (AP) site that is acted upon by an AP endonuclease. The resulting DNA strand breaks activate PARP. In mice lacking APNG, PARP activation and β cell necrosis was markedly attenuated after a single dose of SZ (5). It has been shown that PARP knockout mice are resistant to the development of diabetes induced by SZ (26, 4, 22). However treatment of rats with both SZ and PARP inhibitors led to the development of tumors of the β cells in a few animals (10). This indicates the protective mechanism of cells against mutagenesis; excessive PARP activation and severe NAD⁺ depletion may help the organism by killing cells with excessive DNA damage, so minimizing the occurrence of harmful mutations.

On the other hand, tumor cells with high level of O⁴-MGMT exhibit resistance to nitrosourea-derived antitumor agents (15, 25). They exert their antitumor actions by forming stable interstrand cross-links on DNA which block replication (18). SZ was suggested as a DNA-methylating agent which depletes O⁴-MGMT and sensitizes nitrosourea-resistant cell lines (27, 20). However, as far as we know, there is no report indicating O⁴-MGMT depleting action of SZ as a probable mechanism on the pathogenesis of diabetes. In the present study, determined negative correlation between pancreatic O⁴-MGMT level and serum fructosamine level which is used as indicator of diabetes, emphasizes the importance of O⁴-MGMT depletion on onset and/or progression of diabetes mellitus.

Altered enzymic activity by non-enzymic glycation of enzymes is well documented (8, 30). Non-enzymatic glycation is a spontaneous chemical reaction between glucose and the amino groups of proteins in which reversible Schiff bases and more stable Amadori products are formed. Advanced glycation end products (AGEs) are then formed through oxidative reactions and cause irreversible chemical modifications of proteins which can lead the alterations in their structures and functions (31). Although there is no evidence for inactivation of O⁴-MGMT by high level of glucose, this also may explain decreased O⁴-MGMT level in SZ-induced diabetic rats, presented here. Further investigations are needed to clarify this issue.

There are considerable data suggesting that alkylating agents may contribute to an increased prevalence of diabetes (12, 6, 14, 2). In this preliminary study, decreased O⁴-MGMT level was determined in streptozotocin-induced diabetic rats. Apart from the present study, likely, we have determined low level of O⁴-MGMT in leukocytes from type 1 and type 2 diabetic patients as compared to their respective controls (unpublished data). Data imply that O⁴-MGMT depletion may be one of the mechanisms for diabetogenic action of SZ in rats. However, it is highly new suggestion and it has not been published so far. A more detailed study on the molecular basis is the goal of our next investigation.
Acknowledgements.

We would like to thank Dr. Peter Karran for his kind gift of methylated DNA, Peter McPherson for his technical guidance, Dr. Tomas Lindahl, Dr. Barbara Sedgwick and Dr. Glenn Major for helpful discussions. This work was supported by The Turkish Diabetes Society.

REFERENCES

