 Role of type I- and type II-interferon in expression of melanoma differentiation-associated gene-5 in HSC-3 oral squamous carcinoma cells

Takao Kon1, Tomoh Matsumiya2, Ryo Hayakari2, Norihiko Narita1, Ryoei Ito1, Kosei Kubota1, Hirotaka Sakk1, hidemi Yoshida2, Tadaatsu Imaizumi2, Wataru Kobayashi1, and Hiroto Kimura1

1 Department of Dentistry and Oral Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan and 2 Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan

(Received 9 September 2013; and accepted 21 November 2013)

ABSTRACT

Melanoma differentiation-associated gene 5 (MDA-5) and retinoic acid-inducible gene-I (RIG-I) are members of DEXH family of proteins, and known to play important roles in antiviral responses to induce type I interferons (IFNs). MDA-5 has been thought to sense RNA virus with long (>1 kb) double-stranded RNA. However, MDA-5 is also induced by type II IFN that is involved in acquired immunity, suggesting that role of MDA-5 remains to be elucidated. In addition, no study regarding MDA-5 in oral region has been performed. Here we investigated the role of MDA-5 in HCS-3 squamous carcinoma cells derived from oral epithelial cells. Treatment of HCS-3 cells with IFN-α2b or IFN-γ significantly induced MDA-5 as well as RIG-I. IFN-α2b exerted anti-proliferative effect in HSC-3 cells while no such effect was observed in the cells treated with IFN-γ. MDA-5 is known to be associated with tumor cell growth in melanoma. However, overexpression of MDA-5 did not alter the proliferation in HSC-3 cells, indicating that MDA-5 is unrelated to the cell growth in this type of cells. We conclude that MDA-5 is induced by both type I- and type II-IFNs in HSC-3 cells, and this suggests MDA-5 may play a role in immune responses in oral cavity.
tory domain (16). Melanoma differentiation-associated gene-5 (MDA-5) also has N-terminal tandem CARDs and the DExH box domain (10). Molecular analysis revealed that RIG-I and MDA-5 share structural and functional similarities (26). RIG-I and MDA-5 are both RNA virus sensors with distinct role: RIG-I recognizes relatively short double-stranded (ds) RNA and 5’ triphosphate-single-stranded (ss) RNA while MDA-5 senses long dsRNA (11). Experimental evidence indicates that RNA viruses sensed by MDA-5 are limited (e.g. picornaviridae) whereas many other RNA viruses including Influenza virus and Hepatitis C virus are sensed by RIG-I (16). Thus, most of the research working on RNA virus sensor has been focused on the function of RIG-I; however, the role of MDA-5 is incompletely understood. MDA-5 was originally reported as a growth suppressor of melanoma (10). We found a high level of MDA-5 expression in glomeruli of patients with severe lupus nephritis or IgA nephropathy (9), and also in gastric mucosa infected with Helicobacter pylori (24). Of note, no significant RIG-I expression that was expected in the patient with severe lupus nephritis was observed. Collectively, MDA-5 may play multiple roles in addition to viral sensing. Following the viral RNA recognition, MDA-5 mediates its signal to a downstream adaptor molecule, mitochondrial antiviral signaling protein (MAVS), resulting in induction of type I IFN (26). As the induced IFN enhances MDA-5 expression (10), there must be a positive feedback loop in antiviral innate immune response.

Oral cavity is one of the initial sites where pathogens enter from the external environment; it is speculated that the innate immune system is highly developed in oral mucosa. To date, however, there is no report about the presence or expression of MDA-5 in oral mucosa. Here, we report the expression of MDA-5 in response to IFN in oral epithelial cell line.

MATERIAL AND METHODS

Reagents. Culture dishes and fetal calf serum (FBS) were from Asahi Techno Glass (Tokyo, Japan). Recombinant human IFN-α2b was obtained from ProSpec-Tany TechnoGene (East Brunswick, NJ, USA). Recombinant human IFN-γ was purchased from Roche Diagnostics (Mannheim, Germany). Antibiotic-antimycotic, FBS, oligo(dT)12–18, Superscript II, and Trizol reagent were purchased from Invitrogen (Carlsbad, CA, USA). Recombinant ribonuclease inhibitor Rnasin was from Promega (Madison, WI, USA). The specific primers were synthesized by Hokkaido System Science (Sapporo, Japan). Immobilon polyvinylidene fluoride (PVDF) membrane was from Millipore Japan (Tokyo, Japan). An anti-MDA-5 antibody was purchased from Immuno-Biological Laboratories (Maebashi, Japan). Monoclonal mouse anti-RIG-I antibody was from Enzo Life Sciences (Miami, FL, USA). Rabbit anti-actin antibody was from Sigma-Aldrich (St. Louis, MO, USA). Bovine anti-rabbit or anti-mouse IgG coupled to horseradish peroxidase (HRP) was from Santa Cruz Biotechnology (Santa Cruz, CA, USA).

Cell culture. HSC-3 cells, a human oral squamous carcinoma cell line (National Institute of Health Science, Tokyo, Japan), were cultured in DMEM containing 10% FBS, penicillin (100 U/mL), streptomycin (100 μg/mL), and gentamicin (80 μg/mL) in an atmosphere of 95% air and 5% CO₂ at 37°C. HSC-3 cells were stimulated with a series of concentrations of IFN-α2b (0.008–5 ng/mL) and IFN-γ (0.04–25 ng/mL) for up to 48 h.

RNA extraction and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Total RNA was isolated from the cells using Trizol reagent. Single-stranded cDNA for a PCR template was synthesized from 1 μg total RNA using a primer oligo (dT)12–18 and the Superscript II reverse transcriptase under the conditions indicated by the manufacturer. A CFX96 real-time PCR detection system (Bio-Rad, Hercules, CA, USA) was used for the quantitative analyses of MDA-5, RIG-I, and 18S ribosomal RNA (rRNA). The sequences of the primers were as follows: MDA-5-F (5’-GTTGAAAAGGCTGGCTGAA AAC-3’), MDA-5-R (5’-TCGATAACTCCTGAACCTG 3’), RIG-I-F (5’-GTGCAAAGCCTTGGCATGT-3’), RIG-I-R (5’-TGGCTTGGGATGTGGTCTACTC-3’), 18S rRNA-F (5’-ACTCAACACGGGAA CCTCA-3’), and 18S rRNA-R (5’-AACCAGACAAATCGCTCCAC-3’). The amplification reactions were performed with SsoFast EvaGreen Supermix (BioRad) according to the manufacturer’s specifications. The amplification conditions were as follows: heat for 30 s at 98°C, followed by heating consecutively at 98°C and 58°C for 5 s each for 40 cycles. After amplification was completed, a melting curve was generated by slowly heating from 65°C to 95°C at 0.5°C increments with 5 s per step, with continuous monitoring of the fluorescence. The melting curves and quantitative analysis of the data were performed using a CFX manager (BioRad).
IFNs regulate MDA-5 in HSC-3 cells

Statistics. Values are expressed as means ± S.D. (n = 3), and statistical significance was analyzed by Student’s t-test. The probability (P) values were based on two-tailed tests, and P < 0.05 was considered to be significant.

RESULTS

Expression of MDA-5 in response to type I and type II IFNs in HSC-3 cells

Since MDA-5 is reported to be induced by IFNs (10), we first confirmed the expression of MDA-5 in response to IFNs in HSC-3 oral epithelial cell line. IFN-α2b is known to have the highest affinity to the type I IFN receptor in type I IFN family (19); indeed, IFN-α2b is used as a therapeutic agent against certain types of malignant tumor such as leukemia (13) and melanoma (6). Therefore, we chose IFN-α2b as the type I IFN in this study. The expression of MDA-5 mRNA was upregulated by stimulation with either IFN-α2b or IFN-γ in a concentration-dependent manner. The expression of MDA-5 was induced by the treatment with 0.04 ng/mL IFN-α2b (Fig. 1A). The maximal effect of IFN-α2b was observed at 1 ng/mL. A similar pattern of RIG-I mRNA expression was observed in HSC-3 cells treated with IFN-α2b (Fig. 1B). Protein levels of MDA-5 and RIG-I in response to IFN-α2b were in agreement with those of the mRNA expressions (Fig. 1C). Fig. 2 shows concentration-dependent effect of IFN-γ on MDA-5 and RIG-I expressions in HSC-3 cells. mRNA levels of both MDA-5 and RIG-I began to increase again after 24 h, and it was a ten-

Western blot analysis. SDS-PAGE and western blot analysis were performed as previously reported (15). Briefly, after two washes with phosphate-buffered saline, pH 7.4 (PBS), the cells were lysed in hypotonic lysis buffer (10 mM Tris (pH 7.4), 100 mM NaCl, 1.5 mM MgCl₂, 0.5% NP-40) containing 0.2% protease inhibitors. The lysates were cleared by centrifugation at 12,000 rpm for 5 min at 4°C. Five micrograms of the cell lysate was subjected to electrophoresis on a 7.5% SDS-polyacrylamide gel. The proteins were then transferred to PVDF membranes, which were then blocked for 1 h at room temperature in TBST buffer (20 mM Tris (pH 7.4), 150 mM NaCl, 0.1% Tween 20) containing 1% nonfat dry milk (blocking buffer). The membranes were incubated overnight at 4°C with one of the following primary antibodies: rabbit anti-MDA-5 (1:250 dilution), mouse anti-RIG-I (1:10,000 dilution), or rabbit-β-actin (1:10,000 dilution). After five washes with TBST, the membranes were further incubated for 1 h at room temperature with HRP-conjugated secondary antibodies in blocking buffer. The membranes were then incubated with HRP-conjugated secondary antibodies in blocking buffer. The membranes were then incubated with HRP-conjugated secondary antibodies in blocking buffer.
IFNs are known to regulate cell proliferation and to induce apoptosis; therefore they are used as anti-tumor agents (17). We initially examined the effect of IFNs on the cell growth on HSC-3 cells. As shown in Fig. 5, IFN-α2b exerted marked suppressive ac-

Effect of MDA-5 on cell proliferation in HSC-3 cells
IFNs are known to regulate cell proliferation and to induce apoptosis; therefore they are used as anti-tumor agents (17). We initially examined the effect of IFNs on the cell growth on HSC-3 cells. As shown in Fig. 5, IFN-α2b exerted marked suppressive ac-

Fig. 1 IFN-α2b induces the expression of MDA-5 and RIG-I in HSC-3 cells in concentration-dependent manner. HSC-3 cells were treated with various concentrations of IFN-α2b for 4 h (A, B) or 8 h (C). Total RNA was extracted from the cells and the mRNA expressions of MDA-5 (A) and RIG-I (B) were examined by real-time RT-PCR analysis. (C) MDA-5 and RIG-I proteins in cell lysates were detected by western blot analysis.

Fig. 2 Concentration-dependent stimulation by IFN-γ of the MDA-5 and RIG-I expression in HSC-3 cells. HSC-3 cells were treated with IFN-γ (0-25 ng/mL) for 8 h (A, B) or 24 h (C). Total RNA was extracted from the cells and the mRNA expressions of MDA-5 (A) and RIG-I (B) were examined by real-time RT-PCR analysis. (C) The cell lysate was subjected to SDS-PAGE and visualized by immunostaining for MDA-5, RIG-I, and Actin.
IFNs regulate MDA-5 in HSC-3 cells

In the present study, we first asked whether or not oral epithelial cell line can induce MDA-5 in response to IFNs. We found that both IFN-α2b and IFN-γ induce MDA-5 as well as RIG-I. We further explored if either type I- or type II-IFN induces the expression of MDA-5 with similar kinetics. Our results showed that type II IFN induces the MDA-5 expression with delayed kinetics as compared with type I IFN. This result

DISCUSSION

An earlier study has clearly shown that the expression of MDA-5 is IFN-dependent (10). Type I- and type II-IFN bind their specific cell surface receptors to activate individual intracellular signal transduction pathway. Type II IFN induces homodimerization of signal transducer and activator of transcription (STAT)1 to induce certain IFN-stimulated genes (ISGs), while type I IFN stimulates formation of complexes composed of STAT1, STAT2, and ISG factor 3 (ISGF3) (20). Therefore, these two types of IFNs have been known to have distinct functions in immune responses. In the present study, we first asked whether or not oral epithelial cell line can induce MDA-5 in response to IFNs. We found that both IFNs can induce the expression of MDA-5 as well as RIG-I. We further explored if either type I- or type II-IFN induces the expression of MDA-5 with similar kinetics. Our results showed that type II IFN induces the MDA-5 expression with delayed kinetics as compared with type I IFN. This result
We also observed that the treatment of IFN-γ had no inhibitory effect on the growth of HSC-3 cells, whereas type I IFN significantly suppressed the tumor cell growth. Our overexpression analysis of MDA-5 clearly indicated no association between MDA-5 and cell proliferation in HSC-3 cells. This result is inconsistent with the report in melanoma cells. From these observations, uncharacterized molecule(s) must participate in the inhibitory effect of type I-IFN on tumor cells growth of oral cancer cells.

We conclude that both IFNs induce the expression of MDA-5 in cultured oral cancer cells. It seemed that the induced MDA-5 is unrelated to the tumor cell proliferation. The expressed MDA-5 may be involved specifically in antiviral immune responses in oral epithelial cells.

Fig. 5 Effects of IFNs on cell proliferation in HSC-3 cells. HSC-3 cells were grown with IFN-α2b or IFN-γ for 24 h, and then those images were captured under a phase-contrast microscopy. IFN-α2b exerted marked suppressive activity in the growth on HSC-3 cells. In contrast, no such effect was observed in the cells treated with IFN-γ.

agreed with our previous observation that IFN-γ induced the expression of RIG-I in mesangial cells with relatively similar expression pattern (8). These observations allowed us to speculate that type I IFN may be associated with early MDA-5 expression while type II contributes the late MDA-5 expression.

Overexpression of MDA-5 inhibits colony formation of melanoma cells (10). Type I IFN have been used for treatment of melanoma to anticipate terminal differentiation (3). In these contexts, MDA-5 may function as a mediator of IFN-induced growth inhibition and/or apoptosis (10). Several early studies reported that, in contrast to type I IFN, treatment of melanoma with IFN-γ results in biologically more aggressive phenotype including inhibition of melanin synthesis and enhancement of intercellular adhesion molecule-1 (ICAM-1) and very late antigen-2 (VLA-2), both of which are known as progression-associated melanoma markers (4, 5). We also observed that the treatment of IFN-γ had no inhibitory effect on the growth of HSC-3 cells, whereas type I IFN significantly suppressed the tumor cell growth. Our overexpression analysis of MDA-5 clearly indicated no association between MDA-5 and cell proliferation in HSC-3 cells. This result is inconsistent with the report in melanoma cells. From these observations, uncharacterized molecule(s) must participate in the inhibitory effect of type I-IFN on tumor cells growth of oral cancer cells.

We conclude that both IFNs induce the expression of MDA-5 in cultured oral cancer cells. It seemed that the induced MDA-5 is unrelated to the tumor cell proliferation. The expressed MDA-5 may be involved specifically in antiviral immune responses in oral epithelial cells.
Acknowledgements
This work was supported in part by Priority Research Grant for Young Scientists Designated by the President of Hirosaki University (to TM), a KAKENHI Grants-in-Aid for Scientific Research 23590560 (to TM) and by a KAKENHI Grant-in-Aid for Young Scientists (B) 23792309 (to HS).

REFERENCES
5. Garbe C and Krasagakis K (1993) Effects of interferons and
cytokines on melanoma cells. *J Invest Dermatol* **100**, 239S-244S.