Role of pituitary adenylyl cyclase-activating polypeptide in intracellular calcium dynamics of neurons and satellite cells in rat superior cervical ganglia

Kanako ISOBE1,3, Takuya YOKOYAMA1, Kasumi MORIGUCHI-MORI1, Miho KUMAGAI3, Yoh-ichi SATOH1,2, Akiyoshi KUI1, and Tomoyuki SAINO1

1Department of Anatomy (Cell Biology) and 2Department of Medical Education, Iwate Medical University, Yahaba, Japan; and 3Division of Special Care Dentistry, Department of Developmental Oral Health Science, School of Dentistry, Iwate Medical University, Morioka, Japan

(Received 31 October 2016; and accepted 24 December 2016)

ABSTRACT

Pituitary adenylyl cyclase-activating polypeptide (PACAP) is a bioactive peptide with diverse effects in the nervous system. The present study investigated whether stimulation of PACAP receptors (PACAPRs) induces responses in neurons and satellite cells of the superior cervical ganglia (SCG), with special reference to intracellular Ca\(^{2+}\) ([Ca\(^{2+}\)]\(_i\)) changes. The expression of PACAPRs in SCG was detected by reverse transcription-PCR. PACAP type 1 receptor (PAC1R), vasoactive intestinal peptide receptor type (VPAC)1R, and VPAC2R transcripts were expressed in SCG, with PAC1R showing the highest levels. Confocal microscopy analysis revealed that PACAP38 and PACAP27 induced an increase in [Ca\(^{2+}\)]\(_i\) in SCG, first in satellite cells and subsequently in neurons. Neither extracellular Ca\(^{2+}\) removal nor Ca\(^{2+}\) channel blockade affected the PACAP38-induced increase in [Ca\(^{2+}\)]\(_i\) in satellite cells; however, this was partly inhibited in neurons. U73122 or xestospongin C treatment completely and partly abrogated [Ca\(^{2+}\)]\(_i\) changes in satellite cells and in neurons, respectively, whereas VPAC1R and VPAC2R agonists increased [Ca\(^{2+}\)]\(_i\) in satellite cells only. This is the first report demonstrating the expression of PACAPRs specifically, VPAC1 and VPAC2 in SCG and providing evidence for PACAP38-induced [Ca\(^{2+}\)]\(_i\) changes in both satellite cells and neurons via Ca\(^{2+}\) mobilization.

Pituitary adenylyl cyclase-activating polypeptide (PACAP) belongs to the superfamily of metabolic, neuroendocrine, and neurotransmitter peptide hormones (52). The two biologically active forms (PACAP38 and PACAP27) share the same 27 amino acids at the N terminus and are members of the vasoactive intestinal peptide (VIP)/secretin/glucagon family (1, 26). The effects of PACAP in cells are mediated via class B G protein-coupled receptors (GPCRs) of the secretin receptor family. Three PACAP/VIP receptor genes have been identified: one encodes the preferred PACAP receptor (PACAPR) PAC1R, whereas the other two encode receptors that respond equally to PACAP and VIP, namely, VIP receptor type (VPAC)1R and VPAC2R. PAC1R not only activates a group II receptor signaling cascade via adenylyl cyclase (45), but is also coupled to the phospholipase (PL) C pathway (55). That is, PAC1R is coupled to Gs and Gq\(_{11}\) for activation of adenylyl cyclase and PLC, respectively (7, 11, 35, 41, 50), and binds to PACAP with a 1000-fold higher affinity than to VIP (15, 16).

PACAP and its receptors are mainly expressed in nervous tissues (51). Although it has various physiological functions, it primarily functions as a neurotransmitter, vasodilator, and immunomodulator (52). PACAPRs have been detected in the sympa-
thetic superior cervical ganglia (SCG) (8, 28, 31, 32). PAC1R mRNA was found to be highly expressed in all principal neurons of SCG, but VPAC1R and VPAC2R mRNA were not detected by in situ hybridization (32). Another study showed that many nerve fibers and terminals innervating postganglionic sympathetic neurons were PACAP-immunoreactive, whereas VIP expression was rarely observed in intraganglionic neuronal processes (22). SCG neurons expressed PAC1R but not VIP/PACAP-nonselective VPAC1Rs, and low VPAC2R transcript levels were restricted to ganglionic non-neuronal cells (7). As mentioned above, some disagreement exists among the reported results to date.

There have been little studies analyzing the functions of SCG neurons and satellite cells. In case of nucleotide receptors, SCG possess at least two different types of receptors, P2X and P2Y, both of which are excitatory in nature and thus trigger noradrenaline release (4, 5). Peripheral nervous tissues mostly consist of neurons and satellite cells, and investigations have primarily focused on responses of neurons rather than those of satellite cells. A previous study described changes in intracellular Ca\(^{2+}\) concentration ([Ca\(^{2+}\)]) that are thought to be essential events in various cell functions (2) including neurons and satellite cells in SCG of rats. We recently reported that purinoceptors and protease-activated receptors (PAR)s are present in rat SCG, and that ATP and PAR2 agonists induced changes in [Ca\(^{2+}\)], first in satellite cells and subsequently in neurons (23, 25). These results indicated that satellite cells are not just silent supporting cells but actively participate in nervous system function.

The present study investigated whether PACAP and VIP receptors (PAC1R, VPAC1R, and VPAC2R) are expressed in neurons and satellite cells of the rat sympathetic SCG by reverse transcription (RT)-PCR. We also examined the signaling mechanism of PACAP38- and PACAP27-induced [Ca\(^{2+}\)] changes in SCG. We used intact SCG for these studies, since cellular signaling mechanisms may be altered in primary cell cultures. We are still far from an understanding of the mechanisms used by normal tissues in vivo, because in previous studies, the isolated/cultured cells lose their natural conformation and structure, and as a result, such cells may have an altered intracellular signaling. The signaling mechanism of PACAP and VIP receptors which induced [Ca\(^{2+}\)] changes in SCG was also examined. We therefore assessed the IP\(_3\)- and cAMP-dependency of PACAP38-associated [Ca\(^{2+}\)] changes in SCG cells. In addition, the functional relationship between neurons and satellite cells is discussed.

MATERIALS AND METHODS

Preparation of SCG. The study protocol including animal experiments was approved by and conducted under the authority of the Iwate Medical University Institutional Animal Care and Use Committee. Adult male Wistar rats (8–12 weeks old, weighing 250–350 g) were used. The animals were sacrificed using carbon dioxide gas and perfused via the left cardiac ventricle with Ringer’s solution (147 mM NaCl, 4 mM KCl, and 2.25 mM CaCl\(_2\)) at room temperature (~23°C). SCG and associated connective tissues were removed in HEPES-buffered Ringer’s solution (HR) composed of 118 mM NaCl, 4.7 mM KCl, 2.5 mM CaCl\(_2\), 1.1 mM MgCl\(_2\), 1.0 mM NaH\(_2\)PO\(_4\), 5.5 mM glucose, 0.2% bovine serum albumin (Sigma, St. Louis, MO, USA), MEM amino acid solution (Gibco, Grand Island, NY, USA), 2.0 mM L-glutamine, and 10 mM HEPES (pH 7.4, adjusted with NaOH). Ca\(^{2+}\)-deficient solutions were prepared by replacing CaCl\(_2\) with EGTA (1.0 mM; Sigma).

Calcium-sensitive dye loading and stimulation. Spatio-temporal changes in [Ca\(^{2+}\)] in SCG were determined by ratiometry using the fluorescent dye Indo-1, whose emission spectrum shifts upon binding to Ca\(^{2+}\). Dye loading was carried out using an acetoxymethyl ester of this dye (Indo-1/AM; Dojindo, Kumamoto, Japan). The specimens were transferred to HR containing 300 U/mL purified collagenase (Elastin Products, Owensville, MO, USA), 0.02% Cremophor-EL (Nacalai Tesque, Kyoto, Japan), and 10 μM Indo-1/AM, followed by incubation for 1 h at 37°C. The specimens were then transferred to coverslips coated with Cell-Tak (Collaborative Biomedical, Bedford, MA, USA) in Sykus-Moor chambers and continuously perfused with HR containing selected stimulants.

Confocal imaging of [Ca\(^{2+}\)], dynamics. A real-time confocal microscope (RCM/Ah; Nikon, Tokyo, Japan) was used to evaluate cellular [Ca\(^{2+}\)] changes. Indo-1-loaded cells were exposed to ultraviolet light (351 nm) and visualized with an inverted microscope equipped with an argon-ion laser (TE-300; Nikon), with the fluorescence emission passing through a water-immersion objective lens (Nikon C Apo 40×, N.A. 1.15) to a pinhole diaphragm. Eight frames were integrated to obtain images with maximal spatial resolution. Images were immediately stored on a high-speed hard drive and the ratio of fluorescence intensity < 440 nm to that > 440 nm (< 440 nm /
PACAP receptors in rat SCG

N-type Ca$^{2+}$-channel blocker ω-conotoxin GVIA (1 μM) (both from Nacalai Tesque, Kyoto, Japan); and the IP3R blocker xestospongin C (2 μM) and nonspecific cation-channel blocker GdCl3 (100 μM) (both from Wako, Osaka, Japan).

RNA extraction and RT-PCR. Total RNA was extracted from SCG using the RNeasy Micro kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. RNA concentration was determined by spectroscopy at 260 nm. Isolated RNA was used for RT-PCR on a PC-701 thermal cycler (ASTEC, Fukuoka, Japan) using the ReverTra Ace-α kit (Toyobo, Osaka, Japan). The primer sequences used are shown in Table 1 and were designed using the web-based tool Primer3Plus (http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi). The thermal cycling conditions were as follows: 94°C for 2 min; 35 cycles of 94°C for 45 s, 60°C for 30 s, and 72°C for 1 min, and 72°C for 10 min. PCR products were resolved by electrophoresis on 2% agarose gels stained with ethidium bromide. Images of the gels were captured using a Polaroid MP4 Land Camera (Polaroid, Minnetonka, MN, USA).

Three independent experiments were performed.

Ultrastructural analysis. To detect ultrastructural changes during the isolation procedure, we examined isolated SCG by electron microscopy. SCG were fixed in 1.25% glutaraldehyde (Nacalai Tesque) and 4% paraformaldehyde (Merck Millipore) in 0.1 M PBS for about 3.5 h at 20–25°C. Specimens were then post-fixed in 1% osmium tetroxide (Merck Millipore) in PBS for 1.5 h at 4°C, dehydrated in a graded series of ethanol, and embedded in Epon 812 (TAAB, Berks, Germany). Longitudinal and transverse sections were consecutively cut through the

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Primers used for PCR analysis of PAC1R, VPAC1R, and VPAC2R expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receptor</td>
<td>Sequence 5’–3’</td>
</tr>
<tr>
<td>PAC1R</td>
<td>F AACGACCTGATGGGACTAAAC 458</td>
</tr>
<tr>
<td></td>
<td>R CGGAAGGGCAACAAGATGACC 850</td>
</tr>
<tr>
<td>VPAC1R</td>
<td>F GAGAGGAAGACACCGTGGG 3331</td>
</tr>
<tr>
<td></td>
<td>R CAGAAGGGACCTGGTGTTGT 3493</td>
</tr>
<tr>
<td>VPAC2R</td>
<td>F GCTTTCTGAGGCACTTAGGC 2522</td>
</tr>
<tr>
<td></td>
<td>R CTGGAGG CCTTCAAGAGT 2751</td>
</tr>
<tr>
<td>GAPDH</td>
<td>F TTCAACGGCACAGTCGAAGC 1009</td>
</tr>
<tr>
<td></td>
<td>R TCCACCACCCTGGTGCTAGC 1820</td>
</tr>
</tbody>
</table>

PAC1R primers are from Syed et al. (42). VPAC1R and VPAC2R primers were designed using the web-based tool Primer3Plus. Reaction conditions are described in the Materials and Methods. F, forward primer; R, reverse primer. All primers were assessed for sequence homology with other genes by BLAST searches (http://blast.ncbi.nlm.nih.gov/Blast.cgi).
presence of extracellular Ca\(^{2+}\) ([Ca\(^{2+}\)]_o-free) (Fig. 4a). Similar effects were observed by treatment with GdCl\(_3\) (100 μM), a nonspecific cation channel blocker (Fig. 4b). Neither diltiazem (50 μM) nor ω-conotoxin GVIA (1 μM) inhibited PACAP38-induced [Ca\(^{2+}\)]\(_i\) changes in satellite cells (data not shown), and neuronal responses were only partly inhibited. These results imply that PACAP38-induced cellular responses involve a Ca\(^{2+}\) influx-dependent mechanism in neurons but not in satellite cells.

We next investigated the role of PLC and IP\(_3\) in the PACAP38-induced [Ca\(^{2+}\)]\(_i\) changes in SCG. Stimulation of G proteins activates PLC, which cleaves membrane-bound phosphatidyl inositol bisphosphate to generate IP\(_3\) and diacylglycerol. The former promotes Ca\(^{2+}\) mobilization from internal stores (2). To determine whether PLC was activated following PACAPR stimulation, specimens were treated with the PLC inhibitor U73122 (10 μM), the sarcoplasmic reticulum Ca\(^{2+}\)-ATPase inhibitor thapsigargin (2 μM), the IP\(_3\)R inhibitor xestospongin C (2 μM), and an inhibitor of TRPC channels as well as a blocker of IP\(_3\)-dependent Ca\(^{2+}\) release 2-APB (100 μM). All four agents completely inhibited PACAP38- or PACAP27-induced [Ca\(^{2+}\)]\(_i\) changes in satellite cells (Fig. 5 and data not shown). In contrast, neuronal responses were only partly inhibited by U73122, thapsigargin, and xestospongin C, while PACAP-
induced Ca\(^{2+}\) release and entry were completely blocked in the presence of 2-APB in neurons (Fig. 5d).

To determine whether protein kinases play a role in the PACAP-dependent [Ca\(^{2+}\)] increase, we examined the effects of several kinase antagonists. H89 (100 μM) slightly inhibited the PACAP-induced increase in [Ca\(^{2+}\)] in satellite cells (Fig. 6a). Similar effects were observed for PKI (14-22) (2 μM) (data not shown) and SQ22536 (100 μM) (Fig. 6b). In contrast, neuronal responses were not inhibited by these
Ion channels are only partly involved in PACAP38-induced $[\text{Ca}^{2+}]_i$ changes. The time course of $[\text{Ca}^{2+}]_i$ changes induced by PACAP38 in specific areas of SCG satellite cells and neurons (~1 μm² in size) was analyzed. $[\text{Ca}^{2+}]_o$-free (a) or 100 μM GdCl₃ (b) treatment slightly inhibited PACAP38-induced $[\text{Ca}^{2+}]_i$ increases in neurons. In satellite cells, both treatments failed to inhibit PACAP38-induced $[\text{Ca}^{2+}]_i$ increases ($n = 10$ and 9 for panels a and b, respectively).

Ca²⁺ mobilization from intracellular stores during PACAP38-induced $[\text{Ca}^{2+}]_i$ changes. a: PACAP38 (1 μM) had no effect on $[\text{Ca}^{2+}]_i$ in satellite cells after blocking PLC by treatment with U73122 (10 μM). b: Treatment with the sarcoendoplasmic reticulum Ca²⁺-ATPase blocker thapsigargin (2 μM) and c: treatment with the IP₃ receptor antagonist xestospongin C (2 μM) also showed no effect on PACAP38-induced $[\text{Ca}^{2+}]_i$ increases in satellite cells. a–c: PACAP38 (1 μM) induced slight increases in $[\text{Ca}^{2+}]_i$ in neurons. d: Treatment with IP₃ receptor antagonist and the TRPC antagonist 2-APB (100 μM) completely inhibited PACAP38-induced $[\text{Ca}^{2+}]_i$ increases in both satellite cells and neurons ($n = 10$ each).
agents. These findings confirm the view that cAMP pathways (especially the PKA pathway) weakly contribute to PACAP38-mediated \([Ca^{2+}]\) increase in satellite cells in SCG.

To determine whether SCG satellite cells and neurons express PAC1R, VPAC1R, and VPAC2R, samples were treated with VIP (1 μM), [Ala 11, 22, 28] VIP (1 μM) which activates PAC1R, VPAC1R, and VPAC2R (15, 16, 52) and BAY 55-9837, the VPAC1R/VPAC2R agonist (1 μM). All three agents induced increases in \([Ca^{2+}]\) in satellite cells (Fig. 7), with BAY 55-9837 showing more potent effects (Fig. 7b). However, these agents had little effect on neurons (Fig. 7).

Ultrastructure of isolated SCG

Many intact neurons and satellite cells with normal ultrastructure were observed in SCG. Neuronal somata were wrapped by a satellite cell sheath (Fig. 8a), and neurons and satellite cells were bound by separate plasma membranes; the two cell types were separated by an intercellular space of variable size (Fig. 8). Some portions of the neuronal surface were not covered by satellite cells (Fig. 8b). There were no ultrastructural differences between treated specimens and controls with respect to Indo-1/AM loading (data not shown). Pretreatment of SCG with the various reagents did not cause any ultrastructural changes.

DISCUSSION

The main finding of the present study was that PACAP caused increases in \([Ca^{2+}]\), in SCG, first in satellite cells and then in neurons. Satellite cells expressed PAC1R, VPAC1R, and VPAC2R, whereas neurons primarily expressed PAC1R. PACAP and VIP peptides have various effects in different tissues (52). In the nervous system, PACAP has been shown to exert neurotrophic and neuroprotective effects in cerebral ischemia (30, 33, 36–39, 43, 48). However, there are no reports to date regarding the role of PACAPs in sympathetic nervous tissue specifically, in SCG. We demonstrate for the first time that PACAPR is expressed in SCG and that PACAPs induce \([Ca^{2+}]\) changes in both the neurons and satellite cells, highlighting a role for peptides in sympathetic nerve activation.

We previously observed that PAR2 activation induced an increase in \([Ca^{2+}]\), in SCG satellite cells and neurons, indicating that sympathetic nerves can be activated by proteases that are upregulated in response to inflammation and other pathological conditions (25). We also reported the expression of P2Y and P2X receptors in rat SCG neurons and satellite cells, respectively (23), which suggested that these receptors may be important for neuron-satellite cell signaling. However, their precise functions have yet to be elucidated. In both our experiments, reagents induced an increase in \([Ca^{2+}]\), in many satellite cells followed by neurons (23, 25). This phenomenon was also observed in the present study. It is unclear whether a subset of neurons express only PAC1R; since neurons are enveloped by satellite cells, some may not have been exposed to HR containing the stimulants, especially VPAC1 and VPAC2. PAC1R was also found to bind to PACAP with a 1000-fold higher affinity than to VIP (15, 16). Thus, neurons...
ERS, Ca$^{2+}$ influx is independent of IP$_3$ and dependent on cyclic (c)AMP. In dendrites of hippocampal pyramidal neurons, PKA activation by cAMP enhanced L-type channel currents (17, 20). In our study, U73122 and other inhibitors of Ca$^{2+}$ release did not completely inhibit [Ca$^{2+}$]$_i$ increase in neurons, suggesting that they possess both IP$_3$-independent and -dependent Ca$^{2+}$ mobilization systems. In addition, VIP, VPAC1, and VPAC2 agonists failed to induce [Ca$^{2+}$]$_i$ responses in neurons. Some studies have shown that the β-adrenergic receptor agonist isoproterenol failed to induce [Ca$^{2+}$]$_i$ responses in rat parotid and lacrimal gland acinar cells (18, 40, 47). However, isoproterenol as well as forskolin promoted Ca$^{2+}$ release from intracellular stores by stimulating muscarinic and α-adrenergic receptors in rodent parotid acinar cells, which involved PKA-dependent phosphorylation of IP$_3$R (3, 9, 44). It is possible that cAMP caused no changes in [Ca$^{2+}$]$_i$ in SCG neurons; we suggest that they have both IP$_3$-dependent [Ca$^{2+}$]$_i$ release and cAMP-dependent Ca$^{2+}$ influx mechanisms.

![Fig. 7 Effect of VIP receptor agonists on [Ca$^{2+}$]$_i$ dynamics.](image)

Fig. 7 Effect of VIP receptor agonists on [Ca$^{2+}$]$_i$ dynamics. **a**: VIP (1 µM); **b**: [Ala 11, 22, 28] VIP (VPAC1R agonist; 1 µM); **c**: BAY 55-9837 (VPAC2 receptor agonist; 1 µM). All three agonists induced [Ca$^{2+}$]$_i$ changes in satellite cells only ($n = 9, 9$, and 8 for panels a, b, and c, respectively).
PACAP receptors in rat SCG

PACAP receptors in rat SCG induce IP_3 R2 phosphorylation (10). In addition to VIP, VPAC1, and VPAC2, PACAP-induced [Ca^{2+}]_i was also altered by treatment with H89, PKI, and SQ22536. This suggests that IP_3 Rs interact with PKA in satellite cells of SCG. Thus, PACAP-mediated responses in various cell types are likely IP_3 -dependent, although the precise mechanism by which Ca^{2+} is mobilized remains to be elucidated.

In conclusion, [Ca^{2+}]_i changes in satellite cells stimulated by PACAP and VIP analogs are exclusively caused by Ca^{2+} mobilization from internal stores and is IP_3-dependent, whereas IP_3-dependent Ca^{2+} mobilization and Ca^{2+} influx play an important role in neuronal responses to PACAPs. Satellite cell activation by PACAPs and VIPs may affect neuronal activity, although our results indicate that neuronal and satellite cell responses were independent. However, the mechanism underlying PACAP-mediated

Fig. 8 a: Electron micrographs showing neurons (N) covered by satellite cells (S). b: Arrows indicate areas where the neuron is not covered with satellite cells; arrowheads indicate the basal lamina of both neurons and satellite cells. Magnification: 3,200× (a) and 15,000× (b).
intracellular signaling in sympathetic neurons await clarification in future studies.

Acknowledgments

The authors thank M. Hirakawa (Department of Anatomy) for technical assistance. This work was supported by research grants from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (no. JP15K08157 to Y.S.) and a Grant-in-Aid for Strategic Medical Science Research (no. S1491001, 2014-2018). Some of this work was carried out at the Advanced Medical Science Center of Iwate Medical University, which also provided financial support.

CONFLICTS OF INTEREST

The authors declare no competing financial interests.

REFERENCES

PACAP receptors in rat SCG

29. Nakade S, Rhee SK, Hamanaka H and Mikoshiba K (1994) Cyclic AMP-dependent phosphorylation of an immunofluo-

44. Tanimura A, Nezu A, Toyo Y and Matsumoto Y (1999) Iso-
proterenol potentiates alpha-adrenergic and muscarinic recep-

y adenylate cyclase activating polypeptide (PACAP I) and VIP (PACAP II VIP1) receptors stimulate inositol phosphate synthesis in transfected CHO cells through interaction with different G proteins. *Biochim Biophys Acta* **1357**, 249–255.

53. Wojcikiewicz RJ and Luo SG (1998) Phosphorylation of inosi-
tol 1,4,5-trisphosphate receptors by cAMP-dependent protein kinase. Type I, II, and III receptors are differentially susceptible to phosphorylation and are phosphorylated in intact cells. *J Biol Chem* **273**, 5670–5677.

54. Wu D, Katz A and Simon MI (1993) Activation of phospholi-
pace C beta 2 by the alpha and beta gamma subunits of tri-

tropic effects in the nervous system by activating multiple signal-