Biomedical Research
Online ISSN : 1880-313X
Print ISSN : 0388-6107
ISSN-L : 0388-6107
Full Papers
Noradrenergic effects in rat sacral autonomic nucleus using in vitro slice patch-clamp recordings
Author information

2017 Volume 38 Issue 6 Pages 359-369


Noradrenergic modulation has been frequently discussed in the context of neural activities that are related to pelvic organs. The sacral preganglionic nucleus (SPN) is a spinal nucleus containing parasympathetic preganglionic neurons that send fibers to pelvic nerves. In spite of the abundant presence of noradrenergic fibers around the SPN, the effects of noradrenaline (NA) remain obscure. To explore this issue, NA (50 μM) was applied to parasympathetic preganglionic neurons in the SPN during whole-cell patch clamp recording. The SPN was labeled with the retrograde tracer, DiI. These neurons demonstrated two classes of firing patterns (delayed and regular) in terms of initiation of firing. Independent of these firing patterns, NA induced inward (56%) or outward (32%) currents in labeled SPN neurons. Phenylephrine, an α1 receptor agonist, induced an inward current, and clonidine, an α2 receptor agonist, induced an outward current, indicating the existence of both α1 and α2 adrenoreceptors in DiI-labeled SPN neurons. NA also modulated synaptic currents according to the firing patterns. In delayed firing neurons, NA inhibited both spontaneous excitatory post-synaptic currents (sEPSCs) and spontaneous inhibitory post-synaptic currents (sIPSCs). Hence, NA facilitated sEPSCs and sIPSCs in about a half of regular firing neurons. Bath application of phenylephrine facilitated sEPSCs and sIPSCs, and clonidine inhibited them. These results support the hypothesis of multiple effects of NA in the SPN, and may suggest functional differences among SPN neurons.

Information related to the author
© 2017 Biomedical Research Press
Previous article Next article