S2C3
腹腔内の開口/閉口現象は理論的に定量化できる
○末幸 幸伸（佐賀大学物理）

末幸先生の研究では、腹腔内の開口/閉口現象を理論的に定量化する新たな手法を提案している。この手法は、開口/閉口現象の時間変化を記述する数学モデルを提案し、これを解いて開口/閉口の瞬間を予測することができる。この手法は、胃の収縮や十二指腸の平発表や小腸の摂動などの実際の現象を再現する能力を持つ。

S2C4
膜脳分子を酵素的に変化させて、膜小胞を変形させる
谷口 元宏、大木 和夫、○宮田 英哉（東北大学・院理・物理）

酵素による膜脳分子の変化は、膜小胞の形態変化の理解を深めるための重要な手順である。この研究では、酵素を用いて膜脳分子の変化を制御し、膜小胞の形状変化を観察した。酵素による変化は、膜小胞の形態変化に大きく関与することが示された。

S2C5
膜小胞がもつ万能なトポロジー変換機能を見る
○村野 明正、浦川 佳夫（名大・院理・生命理学）

膜小胞のトポロジー変換機能は、細胞内物質の輸送や細胞の形態変化に不可欠である。この研究では、膜小胞のトポロジー変換機能の観察を行ない、膜小胞がどのように形態変化するかを明らかにした。

S2C6
膜小胞の突起形成と周期的振動を理論的に解明する
○梅田 民勝（神戸商船大）

膜小胞の形態変化は、細胞の機能的な変化を調節する重要なプロセスである。この研究では、膜小胞の突起形成と周期的振動を理論的に解明することで、膜小胞の機能的変化を理解するための新たな手段を提供した。