日本生物物理学会第50回年会 公開講座

「生物物理学最前線」—生命の不思議を解き明かす—

生命の不思議な働きは、生体分子が集まって個性のある働きをする事によって生まれます。そうした生体分子のなかでも、とりわけタンパク質は素晴らしい働きをしており、その仕組みを明らかにすることとは、生物物理学の大きな目標のひとつです。この公開講座では、タンパク質の働きを理解するための最先端の研究をわかりやすく紹介します。タンパク質の働きを理解するための重要なステップは、タンパク質の立体的形を知ることですが、その新しい方法として、スーパーコンピューターや電子顕微鏡、電子線を用いた方法が注目されています。本公開講座では、この新しい分野で独特的な方法を考案し、世界をリードしてきた2人の研究者が講演をします。タンパク質の形を解き明かす技術の見事さとともに、タンパク質の形からわかる生命現象、生理現象の論理の見事さは、私たちを惹きつける魅力にあふれています。

日時：2012年（平成24年）9月22日（土）13:00～14:00
場所：名古屋大学 東山キャンパス 豊田講堂ホール（S会場）
地下鉄名城線「名古屋大学」駅2番出口徒歩すぐ
参加費：無料（どれでも自由に参加できます）。
主催：日本生物物理学会第50回年会 実行委員会
共催：名古屋大学理学研究科

プログラム

13:00 開会
司会：笹井 理生 教授（名古屋大学 大学院工学研究科）
講演「スーパーコンピューターでタンパク質の形と働きを探る」
岡本 祐幸 教授（名古屋大学 大学院理学研究科）
準備中

講演「膜タンパク質の形と働きを観る」
藤吉 好則 教授（名古屋大学 大学院薬学科学研究科）

我々が見て、考えて、行動する場面で、神経細胞などの脂質膜の内にある膜タンパク質が重要な役割を果たしている。それらの働きを深く理解するためには、電子顕微鏡を用いて、立体的形＝構造を観察したいと思う。しかし、強い電子線を照射すると生物試料は一瞬で黒変化してしまう。しかも、電子の通り道は高い真空状態に保たなければならない。それゆえ、室温の状態で生物試料を観察しようとすると、水分が飛んで干からびてしまい、電子線による損傷も受ける。これらの問題を解決するために、液体ヘリウムでマイナス270℃近くまで冷却した状態で高い分解能の像を撮影できる電子顕微鏡が作られた。この様な装置を用いて、膜タンパク質の立体構造が解析されることで、それらの機能の詳細が理解できるようになった。「膜タンパク質の形と働きを観る」ことによって、ヒトの身体の機能を分子レベルから理解しようとする試みについて紹介したい。

おわりに
美宅 成樹 教授（名古屋大学 大学院工学研究科）

14:00 閉会