molecules in the groove on each structure. The variability of the conformation was different depending on the solvation condition. The DNA conformation seemed to be influenced by the localization of the water molecules in the groove.

3PT109 Model for self-assembly of flexible DNA motifs using stacking interactions

Keitel Cervantes-Salguero, Shogo Hamada, Satoshi Murata (Tokohi University)

Molecular Clusters (MCs) with variable number of constituents seem to be possible if building units are properly designed. Recently, concentration-dependent self-assembly of MCs was demonstrated by utilizing both flexibility of DNA motifs and inter-molecular bonding by sticky-ends (He, Y. et al., Nature 2008). Here we propose a cluster of DNA motifs by using DNA blunt-end stacking and flexibility introduced in the motif. First, we study an abstract model of flexible planar monomers (triangle with sticky sides A and B, and shrinkable side C. Angle between A and B is about 60 deg.) that move randomly on a surface colliding against each other. Sides A and B of different monomers can stack, thus forming a flexible dimer. Over time we expect to obtain clusters from dimers up to hexamers. We simulated the dynamics of the cluster formation based on chemical kinetics successfully applied to rigid monomers (Chiba, K. et al., J. Phys. Chem. B 2004). Our simulation shows that the amount of trimers overcomes the tetramers. However, contrary to the work of Hosokawa et al., dimers and pentamers seem to be equally formed. Second, to realize the concept, we have designed a DNA motif with blunt-end stacking interactions, which were proved to be a potential tool for self-assembling larger DNA structures (Woo, S. et al., Nature Chemistry 2011).

3PT110 A Growth mechanism of DNA tile array

Yuki Matsubara, Nao Otani, Miho Tagawa, Akira Suyama (Univ Tokyo, Dept Life Sci)

We report a growing mechanism of DXAB (DNA double-crossover AB-staggered) tile array known to form planar structures and grow to large-scale DXAB tile array is a kind of DNA tile array and can be used as a scaffold to control positions of nano-particles. Growth mechanisms of the array are important information to set its properties, such as size, accuracy of position control, yield, or the required time of annealing. Here, we report that the growth of array is a co-operative phenomenon in narrow temperature range. This transition width is shorter than a prediction by model based on lengths of the sticky-ends. This has been visualized by fluorescence optical microscope, because, unlike the tiles' assembly, growth of the tile arrays cannot be observed in melting curve. From this knowledge we show two applications, making big isolated sheets and shortening the annealing time in protocol, as examples. These experimental results demonstrate that such knowledge about growth mechanisms is useful to control properties of DNA nanostructures.

3PT111 DNA ナノ構造を用いた DNA-RNA ポリメラーゼハイブリッドナノシステムの構築と機能評価

Construction and functional analysis of DNA origami base DNA-RNA hybrid nanomachine

Takeya Masubuchi, Hisashi Tadakuma, Masayuki Endo, Hiroshi Sugiyama, Yoshe Harada, Takuya Ueda (Graduate School of Frontier Science, The University of Tokyo, ICEMS, Kyoto University)

DNA nanotechnology has recently developed a new nanoscale device called a DNA origami tile (DNA origami). DNA origami is a method for folding long single strand DNA into arbitrary two or three dimensional structures and can be used as a molecular platform which allows proteins and other molecules to place with precisely controlled patterns at nanometer order. Here, we applied DNA origami technology into transcription system. Transcription system is thought to couple to other system in E. coli (e.g. translation and replication). And reconstitution of such sequential reactions in vitro is important for science and engineering, for which the DNA origami technology may provide platform. As a first step, we assembled T7 RNA polymerase (T7-RNAp) on DNA origami. Rectangle DNA origami (90 x 60 nm) are prepared as reported (Rothemund Nature 2006), and SNAP-tag protein fused T7 RNAp (T7-RNAp-SNAP) were site-specifically anchored on DNA origami through its specific ligand (benzyglycine (BG)-ligand) included on the DNA origami. With the optimized assembly condition, we succeeded in measuring the activity of T7 assembled DNA origami (T7-Tile). We will check the effect of the number and the layout of T7-RNAp on the activity of T7-Tile.

3PT112 リボソームへのDNAリンクの吸着

Adsorption of DNA ring onto Liposome

Yumiko Kumagai, Shogo Hamada, Shin-ichiro Nomura, Satoshi Murata (Department of Bioengineering and Robotics, Graduate School of Engineering, Tokohi University, Japan)

The various molecular devices made of biomolecules such as nucleic acid, protein and lipid are reported. We are now able to design each devices with certain complexity, although it is still difficult to combine multiple devices into one functional system. Embedding various molecular devices within a given-size compartment is one of the potential solutions to solve this problem and enable us to achieve programmed behavior of the system. A key component to realize this concept is a channel device integrated into the compartment, which allows materials pass through the compartment.

Here, we adopt a phospholipid as material for micron-sized compartment, and DNA nanostructure for the channel device embedded on the compartment surface. In the design of the DNA channel, we have been inspired by the macrocyclic resorcin channel, which is an artificial mimic of a natural ion channel. We have adopted the T-motif DNA ring that has a similar structure to this. The surface of the DNA channel is hydrophilic, therefore, has affinity to the lipid membrane surface. In order to integrate the ring into the membrane, hydrophobic groups are attached to the DNA rings. We adopt Cholesterol-TEG as the hydrophobic groups and confirmed the formation of those DNA rings. We also found that DNA structures tend to rest on the lipid membrane surface by giving positive charge to the lipid. Currently, we are working on the optimization of the lipid composition to give an appropriate charge condition.

3PT113 膜質二重層上のDNAナノ構造の基板上成長

Substrate-Assisted Self-Assembly of DNA Nanostructure on lipid bilayer

Shogo Kudo, Shogo Hamada, Shin-ichiro Nomura, Satoshi Murata (Department of Bioengineering and Robotics, Graduate School of Engineering, Tokohi University, Japan)

Substrate-Assisted Self-Assembly (SASA) by Hamada et al. enables us to make large 2-D DNA nanostructures that are difficult for conventional self-assembly in free solution. So far, limited materials, e.g., cleaved mica, are known for suitable substrate for the method. It is necessary to extend the method to utilize various materials for the substrate. However, the process of SASA is very complex and not yet thoroughly understood.

To model SASA, we divide it into adsorption and self-assembly processes. The adsorption process is described by DLVO theory. Following Sushko, we can calculate energy of DNA adsorption by DLVO. We also measured minimal length of DNA, or equivalently energy per base pair, to be absorbed on mica substrate. In order to extend SASA to other materials, measured absorption energy between DNA and mica surface roughly indicates the feasible condition for SASA. Based on this consideration, we chose lipid bilayer (DOPG) for the substrate, because the calculated energy between 100 base pairs of DNA and the bilayer is enough to absorb when magnesium ion concentration is 12.5 mM. However, we haven’t confirmed DNA adsorption under this condition. Currently, we are working on experiments to search appropriate conditions for SASA.

3PT114 中性塩に結合したL-Fampinの最適構造と構築性の固体NMRとQCMによる解析

Structure and affinity of bovine lactoferrin bind to neutral model membrane as studied by by solid state NMR and QCM

Masayoshi Imachi, Javkhantugs Namsrai, Atsushi Kira, Izuru Kawamura, Akira Naito (Graduate School of Engineering, Yokohama National University, Research and Development Division, ULVAC Inc.)

Recently antimicrobial peptide is focus attention on a potential alternative for antibiotics. Analysis of membrane bound structure of peptide provides important information on efficiency and side effect of medicine. Bovine lactoferrin(L-Fampin) is an antimicrobial peptide found in the N1-domain of bovine lactoferrin (268-284) and consists of 17 amino acid residues. Bovine lactoferrin (bLF) is an iron binding glycoprotein with innate immunity factor in mammalian secretory fluid for example, tear saliva and milk.

In this study, the structure of L-Fampin bound to the neutral membrane was determined using chemical shift oscillation analysis by observing the chemical