3P025 Taming the Reactive 5'-Deoxyadenosyl Radical by Enforcing van der Waals Contact with Substrate in Lysine 2,3-Aminomutase


Lysine 2,3-aminomutase (LAM) utilizes a [4Fe-4S] cluster, S-adenosyl-L-methionine (SAM) and pyridoxal 5'-phosphate to isomerize L-ω-Lys to L-β-Lys. LAM is a member of the radical-SAM enzyme superfamily in which a [4Fe-4S] cluster reductively cleaves SAM to produce the 5'-deoxyadenosyl radical (5'-dAdo*), which abstracts an H-atom from Lys. 5'-dAdo* is so reactive that it has never been observed, thus this makes characterization of this step difficult. We utilize multinuclear ENDOR to characterize this radical mechanism in LAM by using SAM surrogate. We conclude that the active-site facilitates hydrogen atom transfer by enforcing van der Waals contact between radical and Lys. This constraint enables the enzyme to minimize and even eliminate side reactions.

3P026 Substrate binding ability of the Trp introduced mutant of carbohydrate-binding module


The carbohydrate binding module attached to endo-1,3-β-glucanase from Cellulasimicrobium cellulans DK-1, CMB-DK, have putative imperfect tandem α-, β-, and γ-repeats. Among the three repeats, we recently showed that the α-repeat mainly contributes to the carbohydrate binding, in which Asp270 and Trp273 have the critical role [1]. While the residues corresponding to Asp 270 are conserved in both β- and γ-repeats, the residues corresponding to Trp273 are Asp314 and Gly358, respectively. In this study, we generated the Trp introduced mutants, D314W and G358W, and analyzed the interactions with laminarin and laminarioligosaccharides, using surface plasmon resonance biosensor and isothermal titration calorimetry.


3P027 Chemical Exchange between Two Conformations within Hisd64 in a Mutant of Carbonic Anhydrase I is Sufficiently Slow on the NMR Timescale

Hideto Shimahara (JAIST CNMT)

Human carbonic anhydrase I (hCAI) has been extensively studied as a model system for investigating the finely tuned movement of protons in an efficient histidine-regulated hydrogen bond relay during enzymatic catalysis. Here, we report structural information of the histidine (His64), using site-directed mutagenesis and 2D 15N/1H NMR experiments for determining the tautomeric constant of histidine residues. We found that the NMR resonance of 15N nucleus in the imidazole of His64 splits into two signals in a mutant enzyme. This shows that 1) His64 has two conformations and 2) the chemical exchange is sufficiently slow on the NMR timescale. This feature strongly supports that the proton transfer process does not require a change in orientation of His64 during catalysis.

3P028 Structural changes of the J1 nitrilase from Rhodococcus rhodochrous upon temperature increase tracked by 1H NMR

Kyouhei Oyama, Ryo Ishiguro, Teturo Fajisawa (Faculty of Engineering, Gifu University, RIKEN SPring-8 Center)

Nitrilase is an industrial enzyme that hydrolyzes nitrile compounds into ammonia and carboxylic acids. The nitrilase from Rhodococcus rhodochrous (J1-NTase) associates from an inactive dimer to an active oligomer upon heating. The C-terminus of J1-NTase is known to be easily degraded by proteases and its loss induces a helical complex with higher activity.

We, therefore, examined structural change of J1-NTase upon heating by 1H NMR. Despite of its large molecular weight (80kDa in dimer), the methyl signal peak of J1-NTase was clearly resolved at low temperatures and gradually decreased with temperature increase. We are going to interpret these spectral changes in comparison with small-angle scattering data.

3P029 Analysis of unfolded structure of Staphylococcal nuclease mutants by using FRET

Emi Ohta, Takuya Muto, Yusuke Kishi, Mariko Yamaguchi, takayoshi Watanabe, Yoichi Yamazaki, Hironari Kamikubo, Takahiro Hoshaka, mikio Kataoka (Nara Institute of Science and Technology, Japan Advanced Institute of Science and Technology)

Staphylococcal nuclease mutants, 33A34 and W140A, exhibit induced folding but their mechanisms have been shown to be different from each other. To understand the difference, we focused on the unfolded structures of these mutants under physiological conditions. We assume that the initial unfolded structure determines the induced-folding mechanism. The unfolded structures were characterized by the fluorescence resonance energy transfer (FRET) between a donor at D146 and an acceptor at K5. The FRET efficiency of W140A was higher than that of 33A34, suggesting that W140A contains more residual structures than 33A34. The results suggest that the induced folding depends on the local stiffness and flexibility.


Hirofumi Shimizu, Masayuki Iwamoto, Shigetoshi Oiki (Univ.Fukui.Fac.Med.Sci.)

In the Diffracted X-ray Tracking method, synchrotron white x-rays are irradiated to samples to track the motions of the Laue diffraction spots from a gold nanocrystal attached to a protein molecule as a probe. Random fluctuations and global conformational changes of a single-molecule protein are readily measured with the high spatial resolution. In the unfocused white x-ray beamline, BL28B2, in SPring8, we have newly introduced the 1 m of toroidal mirror designed for focusing the beam effectively and the x-ray spectrum measurement system. The set of equipment enabled us to optimize the spectrum for tracking the protein motions with minimal radiation damages of proteins, leading to the recordings in sub-millisecond time resolutions.