フォーラム

応用数理の遊歩道(24)
数理工学を求めて
甘利 俊一

1 はじめに
私が数理の道を歩み始めてからもう 35 年が経
とうとしている。振り返ってみればそれは散歩だ
ったのかもしれない。しかし、歩む最中は無我夢
中で、見通しきかない彼の中をあえぎあえぎ登
っていった感がある。
実は私は今も登っているつもりである。これだ
け夢中にとっては、止まるわけはない。登るのが楽しいものである。しかし、ときどき振り
返ってみのもとで景色を楽しむ余裕もでてきたのは
確かである。これから 4 回にわたって、おしゃべ
りをしてみたい。今回は、もちろろの雑感をまじ
えたおしゃべりを、つづく 3 回は、私の研究テーマ
で比較的長期にわたった、神経回路網、情報幾
何、独立成分解析について、おしゃべりをするこ
とになると思う。よろしくつきあって頂きたい。

2 数理工学に魅せられて
私がこの道に入ることになるのは、東大で教養
学部の一年半を経て進学を決めるときである。
物理や数学は興味があったが、私の実力では無理
に思えた。進学に必要な点が低いのである。電気
として同様である。ところが、数理工学という得体
の知れないコースがあって、そこのではトポロジー
とか微分幾何とかを数学問題に応用してこれを解
くという。そんなもとで得体の知れない話に魅せ
られてここに進学した。学生数は 5 人、志望者も
あまりしゅんいち。理化学研究所脳科学総合研究
センター。

そのくらいしかいないから、誰でも入れる。
苦労の道はここから始まった。数理工学とはな
んだろう。その存在意義はどこにあるのか。こん
な模索を続けながら私なりに行き着いた結論は、
「数理工学とは工学の方法論である。現代数学の
論理を用いて、工学のいろいろな問題の実に潜む
本質的な構造を体系的に解釈して、新しい理論体
系を創ることである。」
言うのはやさしいが実行は難しい。この道の指導
者近藤一夫先生、大先輩の伊理正夫先生に導かれて
て、しかしこれとは違うものを求めて、私の模索
は始まったのであった。

3 手がけた問題
私の研究は、線形の大規模な電気回路網を代数
的トポロジーを用いて解析することから始まった。
Lefshetz のトポロジーの本を一生懸命読み、複
体のディセクションという方法を用いて、Kron
のダイアブリックスという回路の分割解法を
基礎づけるとともに、手法そのものを本質的に拡
張した。これが修士論文である。
博士課程に入って、幅を広げようと、連続体力
学の幾何学理論に手を染めた。ここで転位の連続
体を扱う非リーマン幾何を 4 次元空間にして、転
位の生成消滅を含む理論に拡張したり、強磁性体
における磁場と磁極による応力とをからめて、フ
ィンスラー幾何学による理論を作ったりした。
博士課程の最後は、情報と通信の理論を始めた。
Shannon が言っていることであるが、連続信号
応用数理

の作る空間は時間間隔と周波数帯域を限定すれば、有限次元の信号空間をなす。変調はこれを異なる次元の空間に写像する。つまり、次元の違う空間を用いることになる。雑音による乱れも含めて、変調と復調が幾何学的には何をやっているのか、これを調べたのである。特に、PCMなどの量子化の空間を離散に切り刻む。ここではベクトル量子化（当時そういった言葉はなかった）をすれば、何ピットか情報量が得をする。こういったことも解析した。

九州大学に移ってから、パターン認識とくにリリーフ群をもいたい変性の研究、学習の研究とくに多層パーセプトロンの学習法などを始めた。これは確率降下法であって、その後Rumerholtらが提唱して有名になった誤差逆伝導法と同じものである。ここから神経回路モデルに入っていく。東大に移って、1970年代は神経回路モデルの研究に主力を注いだ。統計神経力学、神経系の力学、学習、連想記憶モデルの解析などである。

10年も続けつつも、もっと他の可能性を探したくなる。数理工学は方法論であり、数理的に面白い問題と手法はまだ限りなくあるからである。こうして、40歳代に入ってから情報幾何を始めた。情報の分野に幾何学的方法を導入したかったのである。これには公文雅之氏や長岡浩司氏の協力があり、私の思う以上にうまくいった。そうこうする中でニューロプームが訪れて、それからのほうが忙しくなった。最近は情報幾何を用いたニューロ多様体の研究に血色をあげている。

停年で理化学研究所に移るころから始めた研究に、独立成分解析がある。多変量の確率変数が観測された場合に、これまでの主成分分析などの手法は、直交基底をうまくとって、分散行列を対角型に変換するものであった。新しい基底のもとで、各成分は互に関係の変動要因を表す。しかし、無関係は独立を意味しない。独立成分解析は直交基底をも許す代わりに、高次のキュムラント情報を利用して、なるべく独立な成分を抽出分解するものである。この問題は比較的やさしいわりに、リセット群ほど、非ホロノーム基底とか、セミパラメトリック統計など面白いことがたくさん出てくる。過去に用いた研究手法を総動員してパーソドをしているような気分で、私はまさにこれを楽しんだといえるだろう。今では、多層パーセプトロンなどの階層モデルの特異点の構造に夢中である。

4 解けなかった問題

手掛けはしたが解けなかったという問題は数多いたくつか挙げてみよう。ひとつは、多元情報統計推論という、情報理論を統計を結ぶ問題である。いま、X, Yの二つの定常情報源があって、情報系列を発生する。ある、簡単のために、0, 1の信号とする。XとYの間には相関があるとする。さて、長さn（たとえばn=1000）つのXの信号とYの信号を、たとえばそれぞれ300ビットに圧縮して送信するとしよう。XとYとは相関の信号を知ることなく、独立に符号化する。このとき、受信端は両者の信号を受けて、XとYの相関の強さを推定したい。もちろん、XもYも始末の300ビットを送ることにすれば、それなりの推定はできる。しかし、全体を符号化してもうまくいかないかということである。どのように符号化したら最適で、このときのFisher情報量は、情報の圧縮率とどのように関係しているかという問題になる。問題は明瞭であり、やさしきように見える。この問題はすいぶん考えた。韓太姫氏と共同で論文も書いたが、特殊な場合や部分的な解以外には、本質的には解いていない。心残りの問題のひとつである。

情報幾何では、正則な確率分布族を扱ってきた。このとき、観測数の多い漸近理論では、最尤推定量は漸近的に正規分布になり、しかも真の分布に収束していくから、幾何でいえば真の分布の近傍、つまり接空間で話が済んだ。接空間にはFisher情情報行列により、ユークリッド計量が入る。ところが、非正則な確率分布、たとえば、確率密度関数が未知のパラメータξを含みp(x, ξ)のように書けて、しかもpがξについて微分可能でない
とき(たとえば, $p(x, \xi) = f(x - \xi)$ で f は区間 $[0, 1]$ 上の一様分布), Fisher 情報量は発散し, 最尤推定は漸近的に正規分布になる。情報幾何で言えば, 確率分布の多様体にはなんら変化はないとないが, 接空間にユークリッド計量が入らず, リーマン空間にはならない。ではどうなるのだろう。確率分布の間の近似は定義できる。微小さな二つの分布の近似が 2 次形式にならず, ミンコフスキー型の計量となる。したがって, これはフィンスラー空間になる。このことが, 中心極限定理が成立せず, 極限での推定量などの分布が安定分布のひとつに近づくことに対応する。こうして, 非正則分布族, 安定分布, フィンスラー幾何を結びつける一般理論ができるものと直観した。しかし, こうした理論の建設は私の力量ではうまく成功しなかった。

5 アメリカ旅行
話をするからわかる。私は, 1975 年から 76 年にかけて, 10 カ月アメリカへ行った。初めてのアメリカで, 年齢は 39 から 40 歳にかけてある。マサチューセッツ大学の M. Arbib 教授のところへ呼ばれていたのであった。

当時, 海外旅行は今のようにはできない時代であった。また私は英会話はまったく臭目で, 外国人が東京へ訪ねてくるなるべく逃げているような有様であった。これでは臭目に思い, Arbib から Center for Theoretical Neuroscience に良い人を紹介して欲しいといわれたときに, 思い切って自分を推薦して行くことにした。大韓航空の安いチケットを手に入れ, 行きの航空機の中で, 大枠 3 万ドル（当時 1000 円に相当）を払って, イヤフォーンを借りて映画を見た。ところがこれがぜんぜん分からない。帰りには分かるだろうとひそかに期待したのである。

アメリカではいろいろと見聞を広めた。アメリカ人と接して, 人間の洋の東西をとわず皆同じ心情を持つと感じたのはこのときである。日本に比べてずっと開かれた社会であるし, 大学の人事など閉鎖的ではなくて, 公募をし, 有望な候補者に講演をさせて, 大学院生の意見も聞いている。

また, セミナーがちょっとあって世界中から講演くる。これで世界の情勢がわかる。私にとって, 自分の学問を築く上で有意義だったと思っている。

ところで, 英語である。一年経って子供たちはベラベラしゃべっているのにこちらは一向にうまくならない。必要な学問のことはなんとか自分で自由しないが日常のおしゃべりはもううまくならない。帰りの大韓航空でまた 3 ドルを払ってイヤフォーンを借りたが, やっぱり分からない。しかし, 英語は分からないと通じしばしばよいのだし, 通じさせることはできると度胸がついたのが収穫であろうか。

6 論争
私は論争は好きじゃない。いまやメールができて, 公の場で見解を戦わせるのはたいへん良いことだと思っている。もっとも, 私のような老人がいまさら, という意見もないではないことも承知している。

さて, 初めての論争は Pellionisz に聞くことで仕掛けられたものだった。これにはいろいろ伏線があり, 私と Arbib とで Pellionisz の小脳テンソル理論はおおきると, 批判論文を書いたときにきのぼる。このときに, 彼から執拗にあの論文を公表するなといってきた。その後, 私がボルツマン機械の情報幾何学という論文を書いたときに, 彼から手紙がきて, 私の論文に彼の論文が引用していないが, 神経回路網に微分幾何学を導入したのは彼が最初であった, それも引用しないのはおおき, その償いとして日本に招待するとか, いろいろな方法を考えよという。人も驚く要求がきた。当然, 彼には反論して断ったわけである。

その Pellionisz が, ニューラルネットのメールサーチに甘利に対する公開質問状を発表した。その趣旨は, 「自分はニューラルネットに微分幾何を導入した元祖であるが, 甘利はそれ
を承知で引用せずに論文を書いた。これは日本の文化の問題であって、日本人は独創的なアイディアを重視しない模倣の文化をもっているのではないか、論文の引用について文化の観点から考える必要がある」という、当時の日本たたきに便乗したまことに巧妙なものであった。

これに応えて、いろいろな人が、論文の引用のあり方を論じ、また日本の文化は本当にそのようなものかどうかを議論している。一方で、Pellionisz がテンソル理論を発表し、私の理論の基礎にこれがあたることが当然の前提となり、甘利の見解を必ず聞きたいものだという意見が多く出されていった。私のまったく知らないところで行なわれたのであったが、臼井支明氏と麻生美樹氏が、たいへんな論争がありますよといって教えてくれた。

私はこの一連の論争を読んであきれ果てたのであるが、振りかかる火の粉は払わなければならな。まず、この公開質問状は私には届いていないものであることから始めて、Pellionisz 理論は線形の理論でしかも関連している理論であり、私の双対接続空間の微分幾何とは縁もゆかりもないこと、論争に参加する人は、独創性の文化を論ずる前に、最低彼の論文と私の論文に目を通してもからにして欲しいこと、さらに Pellionisz がこれを仕掛けた邪悪な意図などを理路整然と書いて、反論した。ここで Pellionisz はすっかり旗色が悪くなり、以後学会にもあまり出てこられなくなってしまった。

これ以外に、ニューロの学習で、学習を途中で止めたほうが過学習が起こらなくて良いという説があるが、統計の最近理論の立場から私はこれにはどうしても納得がいかなかった。そこで、日本のニューロメールでこの問題を提起したところ、小川英光氏からの応答があった。氏の主張は、自分たちは過学習が起こらないように例題を選ぶやり方で学習理論を作っているというもので、私の問題とは必ずしもかみ合うものではなかったが、氏の主張ももっともであり、この論争は双方にとって有益だったと思う。私も村田昇氏と共に学習の統計学的理論を作り、汎化誤差や過学習を明かにした。

最近の話に、金谷健一氏、韓太瞬氏との 3 者を交えた論争がある。これも起源は古く、10 年ほど前から金谷氏と私に交わしてきて決着のついた有益な論争を、氏が再び持ち出したことから始まった。私としては何をするにせよ問題だと思っていただけに、立場をはっきりさせるためにきついことを言ってしまったかもしれない。メールの管理からこのような論争はメール上ですべきでないというクレームがついた。しかし、私は公開の論争は当人にとっても、またそれ以外の人たちにとっても大変有意義なもので大いによったらしいと考えている。