応用数理
Online ISSN : 2432-1982
DLAモデルとランダムウォークの到達確率
深井 康成
著者情報
ジャーナル フリー

2003 年 13 巻 2 号 p. 104-113

詳細
抄録

We consider the probability that a two-dimensional random walk starting at the origin never returns to the half-line (-∞,0]×{0} before time n. It is proved that for aperiodic random walk with mean zero and finite 2+∂(>2)-th absolute moment, this probability times n^<1/4> converges to some positive constant c^* as n→∞. Our investigation of this probability is motivated by the study of the DLA model. In the first half of this paper, we give an explanation of the DLA model and its related works. In the latter half, we outline the proof of our results.

著者関連情報
© 2003 一般社団法人 日本応用数理学会
前の記事 次の記事
feedback
Top