Suppressive Effects of *Perilla frutescens* on Mesangioproliferative Glomerulonephritis in Rats

Toshiaki MAKINO, Tomoko NAKAMURA, Takahiko ONO, Eri MUSO, and Gisho HONDA*

Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, and Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.

Received August 30, 2000; accepted November 9, 2000

Leaves of *Perilla frutescens* var. *crispa* Decne. (perilla, Labiatae) are used as a garnishing vegetable in East Asian countries as well as an herbal medicine prescribed in Kampo medicines such as Saiboku-to. A previous *in vitro* study revealed that a decoction of perilla leaves inhibits the proliferation of murine-cultured mesangial cells. In the present study, we evaluated the *in vivo* anti-proliferative effects of a perilla decoction using rat mesangioproliferative glomerulonephritis induced by an intravenous injection of rabbit anti-rat thymocyte serum (ATS). Leaves of perilla were boiled, and the decoction was orally administered to the rats as drinking water at doses of 100 and 500 mg/kg/d from the day of ATS-injection (day 0) to day 8, when rats were sacrificed. In the histological evaluation, the total number of glomerular cells, proliferating cell nuclear antigen (PCNA) positive cells, and macrophage/monocyte antigen-positive cells in the glomerulus, was significantly decreased in perilla-treated rats. A significantly lower level of proliferation was induced by the serum of the perilla-treated rats than by that of the controls. These results suggest that the perilla decoction suppresses the proliferation of mesangial cells *in vivo* by an inhibition of the glomerular infiltration of macrophage/monocytes and of the production of circulating growth factors.

Key words *Perilla frutescens*; glomerulonephritis; mesangial cell; Labiatae; proliferation; rosmarinic acid

MATERIALS AND METHODS

Preparation for Perilla Decoction Leaves of *Perilla frutescens* Britton var. *crispa* (strain No. 32) were cultivated in the Experimental Station for Medicinal Plants, Graduate School of Pharmaceutical Sciences, Kyoto University; the leaves were harvested in August, 1997. Voucher specimens are deposited in the herbarium of the Station (registration number: 2001). Strain No. 32 with purple leaves and the smell of perillaldehyde has been recommended in traditional Kampo medicine. Fresh leaves were boiled in 20 times weight of tap water for 1 h (extraction ratio: 5.7%), and the decoction was frozen at −20°C until administered to the rats. This decoction contained 8.5 (w/w)% of rosmarinic acid, which is the major active constituent to inhibit the proliferation of cultured mesangial cells *in vitro*.

Experimental Design Mesangioproliferative glomerulonephritis was induced in 6-week-old male Wistar rats (Shimizu Laboratory Materials, Kyoto, Japan) by the intravenous injection of rabbit ATS, which was prepared as earlier reported and provided by Nippon Shinyaku Co. (Kyoto, Japan). Thirty rats were divided into five experimental groups (*n* = 6, respectively): the normal group received injection of normal rabbit serum and treatment with tap water; the control group received injection of ATS (0.2 ml/kg b.w.) and treatment with tap water; the perilla low-dose and high-dose groups received injection of ATS and treatment with perilla decoction (100 and 500 mg/kg/d, respectively); the prednisolone (PSL) group received injection of ATS and treatment with PSL (Wako Pure Chemical Industry, Osaka, Japan, 2 mg/kg/d) used as a positive control. The perilla decoction and PSL were orally administered in drinking water *ad libitum* from the day of serum-injection (day 0) to day 8, respectively. All rats were sacrificed on day 8, when serum and kidneys were collected.

* To whom correspondence should be addressed. e-mail: ghonda@pharm.kyoto-u.ac.jp

© 2001 Pharmaceutical Society of Japan
Mesangial cells isolated from Balb/c mice was measured in the same manner as that of our DNA synthesis in cultured murine mesangial cells. 10) Mesangial cells were harvested using an ABC Elite-peroxydase staining kit (Vector laboratories, Inc., Burlingame, CA, U.S.A.). The average number of ED-1 or PCNA positive-cells in a glomerular cross section was evaluated by counting hematoxylin-positive nuclei in 40 glomeruli.

Histological Evaluation of Renal Tissue Kidney tissues were fixed in Dubosque-Brazil solution, and embedded in paraffin. Sections (4 μm) were stained with hematoxylin-eosin. The average number of cells in a glomerular cross section was evaluated by counting hematoxylin-positive nuclei in 40 glomeruli.

Immunohistological Evaluation of Renal Tissue Kidney tissues were fixed in 10% neutralized buffered formalin, and embedded in paraffin. Sections (4 μm) were stained with anti-proliferative cell nuclear antigen (PCNA) using a DAKO EPOS anti-rat PCNA/HRP kit (DAKO Corp., Carpinteria, CA, U.S.A.), and with anti-rat monocyte/macrophage antigen (ED-1, Chemicon International Inc., Temecula, CA, U.S.A.) using an ABC Elite-peroxydase staining kit (Vector laboratories, Inc., Burlingame, CA, U.S.A.). The average number of ED-1 or PCNA positive-cells in a glomerular cross section was evaluated by counting the cells in 40 glomeruli in each section.

Measurement of DNA Synthesis in Cultured Murine Mesangial Cells DNA synthesis in cultured murine mesangial cells was measured in the same manner as that of our previous study. 10) Mesangial cells isolated from Balb/c mice were cultured in a 3:1 mixture of Dulbecco’s modified Eagle medium and an F12 nutrient mixture (Gibco BRL, Gaithersburg, MD, U.S.A., respectively), supplemented with a 17% fetal calf serum (FCS, Biowhittaker, Walkersville, MD, U.S.A.), 100 U/ml penicillin, and 100 μg/ml streptomycin (Gibco BRL) in 5% CO2 at 37 °C. After seeding mesangial cells into 24-well plates (2×104 cells/well) and incubating the cells for 96 h, the culture medium was replaced with an FCS-free medium. Quiescent cells were stimulated with a medium containing 5% serum of each rat, and subsequently incubated for 24 h. One μCi/well [3H]thymidine (NEN Products, Boston, MA, U.S.A.) was added to the culture medium for the last 4 h of incubation. The radioactive thymidine incorporated into the DNA was measured as the precipitate of 5% trichloroacetic acid, using a scintillation counter (Aloka, Tokyo, Japan). The experiment was conducted in duplicate.

Statistical Analysis Values are represented as mean±S.E. The statistical significance between the control and the perilla-treated groups was determined by one-way analysis of variance (ANOVA). The statistical significances between the normal and control groups, and between the control and PSL groups were determined by the Student’s t-test. A difference of p<0.05 was considered statistically significant.

RESULTS

The perilla decoction was orally administered to the rats with an intravenous injection of ATS. When the rats were sacrificed on day 8, no significant differences in the weights of the body, heart, liver, spleen or kidneys were observed among rats of the normal, control, and perilla-treated groups. PSL-treated rats significantly reduced their body weight (control, 232.8±6.9; PSL, 207.0±4.2, p<0.01; g). In this animal model, proteinuria is maximum on the 4th day after the injection of ATS. 11) In control rats, the amount of urinary albumin was significantly increased, while it was slightly decreased in the perilla-treated rats in a dose-dependent manner (normal, 44±12; control, 1239±585; low dose, 893±772; high dose, 610±136; PSL, 4903±3718; albumin μg/d). These data were evenly varied, and there was no statistical significance.

Figure 1 shows the total cell number in the rat glomerulus. ATS-treatment significantly increased the cell number in the glomerulus on day 8 (p<0.001), while the cell number was significantly decreased in a dose-dependent manner in the perilla-treated rats (p<0.01).

To evaluate the proliferating glomerular cells and the infiltration of monocytes/macrophages in glomeruli, we counted...
PSL; prednisolone (2 mg/kg/d).

The proliferative cell nuclear antigen (PCNA)-positive cell number of a rat was determined as the average of positive cell numbers in 40 glomerular cross sections. Values are represented as mean ± S.E. (n=6). PSL; prednisolone (2 mg/kg/d). **p<0.01 compared to control.

The ED-1 positive cell number of a rat was determined as the average of positive cell numbers in 40 glomerular cross sections. Values are represented as mean ± S.E. (n=6). PSL; prednisolone (2 mg/kg/d). **p<0.01 compared to control.

The serum from each rat induced DNA synthesis in cultured murine mesangial cells. This inducible effect of the control rat serum was stronger than that of normal rat serum. A significantly lower level of proliferation was induced by the serum of perilla-treated rats than by that of the controls, while there was no difference in proliferation for those administered the serum of PSL-treated rats (p<0.05, Fig. 4).

DISCUSSION

Thy-1 nephritis is an animal model of mesangioproliferative glomerulonephritis frequently used for the screening of anti-nephritic drugs. The mechanisms of this model are considered to be divided into the following two phases.8,12) The first phase is characterized by complement-dependent mesangiolysis occurring within 1—3 h of the ATS-injection.13) In the second phase, excessive proliferation of the surviving mesangial cells is stimulated by inflammatory mediators such as the platelet derived growth factor14) and the transforming growth factor-β,15) and mesangial matrix expansion is exhibited.9) Although detailed anti-nephritic mechanisms were not shown, the present study revealed the suppressive effects of a perilla decoction on mesangioproliferative glomerulonephritis in vivo.

In this model, cytokines derived from infiltrated glomerular macrophages/monocytes play an important role in the proliferation of mesangial cells.4,15) Therefore, a perilla decoction would suppress mesangioproliferative glomerulonephritis not only by a direct inhibition of the proliferation of mesangial cells, which has been shown in an in vitro experiment,5) but also by an inhibition of macrophage/monocyte infiltration into glomeruli following the production of inflammatory cytokines. In this context, ED-1-positive mesangial cells were decreased in perilla-treated rats in the present study. Furthermore, a significantly lower level of proliferation was induced by the serum of perilla-treated rats than the control serum in cultured mesangial cells, suggesting that perilla suppresses the production of circulating cytokines or growth factors. Previous study has indicated that orally administering a perilla leaf extract to mice suppresses the production of tumor necrosis factor-α.16) This effect of perilla may contribute to anti-nephritic action as shown in the present study. The inhibitory effects of a perilla decoction on the glomerular infiltration of macrophages/monocytes, however, did not show dose-dependency. In this study, the day of sacrifice was determined as 8 d after ATS-treatment, since the proliferation of mesangial cells was at its strongest at this time.11) Therefore, the time of sacrifice could have been too late for accurately evaluating the glomerular infiltration of macrophages/monocytes. Further experiments conducting sequential sacrifices after ATS-injection and perilla-treatment are needed to evaluate in detail the anti-nephritic mechanisms of a perilla decoction.

In thy-1 nephritis, mesangiolysis following the proliferation of mesangial cells is involved in a complement system.12) Rosmarinic acid, which is the representative compound for the anti-nephritic effects of a perilla decoction in in vitro experiments,7) has an anti-complement effect through its inhibition of C3 convertase7) and C5 convertase,18) as...
well as the covalent attachment to activated C3b.19 These results strongly suggest that the anti-nephritic effect of the perilla decoction in the present study was dependent on the anti-complement effect of rosmarinic acid. However when the kidney specimens in this study were stained with anti-rat C3 or C1q antibodies, there was little deposition of complements identified on the glomeruli of each group. In thy-1 nephritis, the glomerular complement deposits appear 30 min after and then disappeared 48 h after ATS-treatment,20 suggesting that complement-dependent inflammation occurs at a very early phase in this model. Since the perilla decoction was orally administered \textit{ad libitum} to the rats after ATS-injection, it is possible that insufficient active constituents in perilla decoction were circulating in the rat body just after ATS-treatment and therefore did not affect such early complement-dependent inflammatory events. It is suggested that the \textit{in vivo} anti-proliferative effects of a perilla decoction might not be dependent on the suppression of mesangiolysis by the inhibitory effects of rosmarinic acid on complements in the first phase, but on the direct inhibition of active constituents in the perilla decoction on the proliferation or suppression of cytokine production in the second phase.

In conclusion, the present study shows that the oral administration of a decoction of perilla leaves results in anti-proliferative effects on glomerular cells in rat mesangioprolifera-
tive glomerulonephritis. Taken together with our previous \textit{in vitro} study showing that a perilla decoction can inhibit the proliferation of cultured murine mesangial cells,7 it is suggested that \textit{P. frutescens} is a promising agent for preventing mesangioproliferative glomerulonephritis.

Acknowledgments We are grateful to Mr. Hirotos Yoshi-
fusa and Mr. Yutaka Nakamura (Nippon Shinyaku Co., Ltd.) for providing rabbit anti-rat thymocyte serum (ATS). This study was partly supported by a grant from Urakami Foundation and Tumura & Co.

REFERENCES