Prevention of Oxidative Injury in PC12 Cells by a Traditional Chinese Medicine, Shengmai San, as a Model of an Antioxidant-Based Composite Formula

Lei Wang, Hiroshi Nishida, Yoshihiro Ogawa, and Tetsuya Konishi

*Mong University of Pharmacy and Applied Life Sciences; Niigata 950–2081 Japan; and College of Traditional Chinese Medicine & Pharmacology, Capital University of Medical Sciences; Beijing, 100013 China.

Received January 22, 2003; accepted April 4, 2003

The protective effect of Shengmai San (SMS) on oxidative damage in cultured PC12 cells was studied as a model of an antioxidant-based composite formula usable for the treatment of oxidative stress-related complex disorders. SMS, a traditional Chinese herbal medicine, has previously been shown to prevent cerebral oxidative injury in rats. Neuronal model PC12 cells were incubated with SMS for defined periods, chased with H2O2 for 30 min at 37 °C, and subjected to an ELISA-based assay for determining the protein carbonyl content, and a Comet assay for DNA single strand breaks (SSBs). The results showed that both protein carbonyl content and DNA SSBs increased in PC12 cells after the H2O2 chase in a concentration-dependent manner. Both H2O2-dependent carbonyl formation and DNA damage were markedly prevented in the cells pretreated with SMS, and the SMS effects were dependent on both the SMS concentration and the period of pre-incubation with SMS before the H2O2 abuse. At the same time, cell viabilities were enhanced in the SMS-pretreated cells after the H2O2 abuse compared to the control cells as determined by an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. It is concluded that SMS functions not only as a simple antioxidant but also as a modulator of cellular antioxidant defense.

Key words traditional Chinese medicine; Shengmai San; oxidative stress; protein carbonyl; DNA damage; PC12 cells

Numerous reports have suggested that oxidative stress (OS) is implicated in neurotoxic insults1,2) as well as in age-related neurodegenerative diseases such as Parkinson’s disease (PD)3) and Alzheimer’s disease (AD).4) These disorders are associated with an accumulation of oxidative damage to lipids, proteins and DNA,5) and changes in the antioxidant defense systems6) including superoxide dismutase (SOD), catalase and glutathione peroxidase (GPX). In order to prevent oxidative brain damage, therapeutic usage of antioxidants or reducing agents,6–8) such as Vitamin E, Vitamin C and apomorphine, has been trialed. This approach, however, showed only limited therapeutic effectiveness because the pathogenesis of oxidative tissue injury involves multiple disturbances of cellular physiological processes such as the elevation of intracellular Ca2+9,10) To overcome the limited advantages of the use of a single antioxidant, we proposed an antioxidant-based composite therapy for the prevention and repair of the complex diseases that are related to oxidative stress, and have shown that the traditional Chinese medicine Shengmai San (SMS), as a model of an antioxidant-based composite formula, effectively prevented the oxidative brain injury caused by ischemia-reperfusion in rats.11,12) SMS is a composite formula comprising three component herbs, Panax Ginseng, Ophiopogon japonicus and Schisandra chinensis. It has been extensively used for treating coronal heart diseases.13,14) To further understand the mechanism of the protective action of SMS on cerebral oxidative damage, it is useful to examine the effects of SMS on oxidatively abused cultured cells. In the present study, we further investigated the protective effects of SMS against oxidative cellular damage induced by H2O2 in cultured PC12 cells as a neuronal cell model.

MATERIALS AND METHODS

Materials Dulbecco’s modified Eagle’s medium (DMEM) and fetal bovine serum (FBS) were purchased from Sigma Chemical Co. Ltd., U.S.A. Antibiotics and antimycotics were from Gibco BRL Co. Ltd., U.S.A. Cell culture dishes and microplates were obtained from Corning Co. Ltd., U.S.A. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) was from Dojindo Co. Ltd., Japan. Mouse monoclonal IgE against 2,4-dinitrophenylhydrazine (DNPH) was from Sigma Co. Ltd., U.S.A. Rat anti-mouse IgE conjugated to horseradish peroxidase (HRP) was from SBA Inc., U.S.A. 3,3’,5,5’-tetramethylbenzidine (TMB) was from Bio-Rad Laboratories, U.S.A. The Comet assay kit was from Trevigen Co. Ltd., USA. SMS was provided by Iskura Co. Ltd., Japan.

Cell Culture and H2O2 Treatment Rat pheochromocytoma-derived PC12 cells were grown and maintained in DMEM supplemented with 10% FBS and penicillin/streptomycin (60 U/ml) in a humidified atmosphere of 5% CO2 and 95% air at 37 °C. The cells (5×104/cm2) were pre-incubated with nerve growth factor β (NGF β, 50 ng/ml) for 4 d to induce neuronal differentiation. The differentiated cells were treated with SMS for defined periods. After removing external SMS by washing with fresh medium, the cells were chased with H2O2 in serum-free DMEM for 30 min at 37 °C. The cells were harvested and subjected to an ELISA-based assay for protein carbonyl content, and the Comet assay for DNA damage measurement.

Measurement of Protein Carbonyl Formation Protein carbonyl contents were measured by an ELISA method.15) Oxidized bovine serum albumin (BSA) was used as the carbonyl standard, and prepared by Cu2+/H2O2 (500 μM/5 mM) oxidation of BSA. The carbonyl content of the oxidized BSA standard was determined by a previously reported colorimet-

© 2003 Pharmaceutical Society of Japan
Cells were homogenized and reacted with 10 mM DNPH in 2 N HCl at room temperature for 1 h. Proteins were precipitated with 7% trichloroacetic acid (TCA) and then the protein concentration was measured by the bicinchoninic acid (BCA) method using BSA as the standard. A standard curve for the ELISA was prepared for the oxidized BSA diluted with intact BSA at defined ratios (0—40%). Aliquots (100 µl) of test samples and standards (4 µg protein) were placed into a 96-well immunoplate and incubated overnight at 4 °C. The plate was then washed with PBS containing 0.1% Tween 20 (PBST) and incubated with blocking buffer (1% BSA in PBST) for 2 h at room temperature. The samples were further incubated with the primary antibody (mouse anti-DNP IgE; SIGMA) for 4 h, washed with PBST and then incubated with the secondary antibody (rat anti-mouse IgE IgG-HRP conjugate; SBA) for 1 h. The peroxidase reaction was initiated by the addition of TMB (Bio-Rad Lab.) and stopped by the addition of 0.18 M H2SO4. The absorbance was measured at 450 nm using a Bio-Rad model 550 microplate reader.

Single Cell Gel Electrophoresis Assay (Comet Assay)

The Comet assay was performed essentially according to the protocol for the rapid detection of DNA damage by the Comet assay™ kit (Trevigen). The sample cell suspensions (1x10^6/ml) were mixed with low melting agarose and then applied directly onto a CometSlide™. After the agarose was clotted at 4 °C for 10 min, the slides were immersed in chilled lysis buffer containing 2.5 M NaCl, 100 mM EDTA, 10 mM Tris base (pH 10), 1% sodium lauryl sarcosinate, 1% Triton X-100 for 60 min at 4 °C in the dark. Following the lysis treatment, the slides were immersed in freshly prepared alkaline solution (300 m NaOH, 1 mM EDTA, pH >13) for 20 min at room temperature. After two washes in 1X TBE buffer (Tris 100 mM, boric acid 90 mM, EDTA 1 mM) for 5 min, the slides were set on an electrophoresis apparatus. Electrophoresis was conducted in the same buffer for 10 min at room temperature in the constant voltage mode (1 V/cm). Slides were immersed in ethanol for 5 min and then dried under atmospheric pressure. The dried slides were stained with SYBR Green™ (0.1 µg/ml in TE buffer pH 7.5; 50 µl/slide). The DNA damage was visualized under a fluorescence microscope (OLYMPUS model BH 2-RFCA) equipped with a charge-coupled device (CCD) camera. At least 100 comets were randomly recorded. The DNA damage was classified into five grades (0 to 4) as reported elsewhere for according to the comet tail length. The overall damage score was calculated from the arbitrary number (0, 100, 200, 300, 400) given to the cells in each damage grade (0 to 4, respectively). Thus the damage score was in arbitrary units.

Cell Viability Measurement by MTT

Cell viability was assessed by a modified MTT assay as described elsewhere. Briefly, the cells were incubated with MTT (5 mg/ml) in a 48 well microplate for 2 h at 37 °C. The reaction was stopped by the addition of a cell lysis buffer containing 50% (w/v) N,N-dimethylformamide and 20% sodium dodecyl sulfate (SDS) (pH 4.8). The plate was maintained overnight at 37 °C and then the absorbance at 570 nm was determined.

Statistical Analysis

The data were analyzed by analysis of variance (ANOVA) with SPSS10.0 software. p < 0.05 was considered statistically significant. The results are presented as the means ± standard deviation of 3 independent experiments.
dent on the preincubation time before the H$_2$O$_2$ treatment. The cells incubated for a longer period (24 h) showed stronger inhibitory potential against carbonyl formation than the cells incubated for a shorter period (12 h) (Fig. 2B).

Protection against H$_2$O$_2$-Induced DNA Damage by SMS

The protective effect of SMS against H$_2$O$_2$-induced DNA damage was investigated in PC12 cells. First, the cells were treated with increasing concentrations of H$_2$O$_2$ (0.1—0.5 mM) for 30 min at 37 °C and then DNA single strand breaks (SSBs) were assessed by the Comet assay. More than 100 cells were randomly analyzed under a fluorescence microscope and the damage grade was classified into 5 groups (grade 0 to grade 4) according to the arbitrary criteria given for DNA damage (comet tail length) described elsewhere. The cells with no comet tail but with a diffuse nucleus were classified into grade 1. The overall DNA damage, assessed as described in the Materials and Methods, with increasing concentrations of H$_2$O$_2$ showed that treatment of the cells with 0.5 mM H$_2$O$_2$ resulted in serious DNA damage and the SSBs formation almost reached its highest level (378 ± 7 arbitrary units). Since 0.3 mM H$_2$O$_2$ gave rise to significant damage (251 ± 5 arbitrary units, cf. 35 ± 4 in untreated cells), the effect of SMS was examined in the cells treated with 0.3 mM H$_2$O$_2$. The results showed that incubation with SMS for 24 h prior to the H$_2$O$_2$ chase effectively prevented the DNA damage and the effect was also dependent on the SMS concentration, as in the case for the carbonyl formation. The overall DNA damage was reduced to approximately 62% of the control with 0.66 mg/ml of SMS (Fig. 3A). The protective effect of SMS was shown more clearly when the DNA damage grade histogram was precisely examined (Fig. 3B). The numbers of cells with grade 3 and grade 4 damage significantly decreased and instead the cells in grades 2 and 1 increased. Again, the SMS effect was also dependent on the period of preincubation before H$_2$O$_2$ abuse, and the longer incubation with SMS (24 h) gave rise to higher protection against the H$_2$O$_2$-induced DNA damage compared to the shorter incubation (12 h) (Fig. 4A, B).

Protection against H$_2$O$_2$-Induced Cell Death by SMS

To investigate whether the SMS pretreatment is effective for preventing H$_2$O$_2$-induced cell death, the cell viability in PC12 cells pretreated with SMS after H$_2$O$_2$ abuse was further examined using the MTT assay. SMS significantly improved the cell viability in a dose-dependent manner (76% by 0.3 and 83% by 0.66 mg/ml SMS, respectively) (Fig. 5A). The protective effect of SMS became more prominent when the cells were preincubated for longer periods with SMS. The cell viability was elevated from 77% in cells preincubated for 12 h to 81% in cells preincubated for 24 h, as shown in Fig. 5B.

DISCUSSION

SMS is a traditional Chinese medicine (TCM) formula comprising three herbal components, and has been used for treating coronary heart diseases. We focused our attention...
H2O2-induced oxidative insults were examined in PC12 cells. Protective mechanism against cerebral oxidative injury. Were produced in PC12 cells after H2O2 abuse in the present study, and it was revealed that SMS pretreatment prior to the H2O2 chase significantly reduced both protein and DNA damage, and consequently protected the cells from death in a dose-dependent manner. For clinical treatment, approximately 6 g of SMS as dry herbs is taken twice a day. Therefore, the SMS concentration used in the present experiments (between 0.16 to 0.66 mg original dry herbs/ml) is almost comparable to the SMS concentration in the blood plasma estimated from the assumptions that SMS is distributed equally in a body weighing 50 kg and that the body water mass is 70% of the body weight.

It is suggested that the protection of cells against the H2O2 abuse by SMS is not due to its direct reaction with H2O2, because extracellular SMS was washed out before the H2O2 was added to the culture medium in the present experiments. It is more likely that the protective effect is due to its high scavenging potential against hydroxyl radicals since the strong hydroxyl radical scavenging activity of SMS has previously been demonstrated in vitro. However, it is important to note that the protective activity of SMS against the H2O2 abuse was enhanced after the cells were incubated with SMS for the longer period (24 h) compared with the shorter period (12 h). Explanations for this are either that it took time to accumulate sufficient antioxidant ingredients of SMS into the cells to prevent the H2O2-mediated oxidative injury or that secondary transformation of the SMS ingredients in the cells was necessary to achieve the antioxidant protection. However, the secondary transformation is less likely because SMS itself has high potential as a radical scavenger. Modulation of cellular antioxidant systems by SMS might be another, and more probable, mechanism of the enhanced antioxidant potential of PC12 cells, as was suggested in our previous finding that SMS prevented the loss of GPX activity in the brain after ischemia reperfusion in rats. This is also supported by our recent observation that SMS enhanced the expression of GPX activity in cultured myoblasts at both the transcriptional and post-transcriptional levels (paper in preparation). Similar modulation effects of SMS on antioxidant defense enzymes were reported elsewhere, such as that hepatic glutathione (GSH) contents were increased in SMS-administered rats following CCl4 intoxication and that Panax ginseng, one of the component herbs of SMS, enhanced SOD activity and also activated the Cu,Zn-SOD gene at the transcriptional level. It is thus concluded that SMS taken up into cells modulates the cellular antioxidant potential either by acting as an antioxidant or free radical scavenger by itself or by activating intracellular antioxidants and damage repair enzymes. Further investigations are underway to clarify the precise mechanism of the SMS effects and also the active ingredients functioning in the modulation of cellular antioxidant defenses or other multiple pathways leading to cell death.

Acknowledgements This study was supported in part by a grant from the Promotion and Mutual Aid Corporation for Private Schools in Japan. We also thank Iskura Co. Ltd. for providing the Shengmai San preparation (Bakumi-San granules).
REFERENCES