Studies on Interactions between Functional Foods or Dietary Supplements and Medicines. I. Effects of Ginkgo biloba Leaf Extract on the Pharmacokinetics of Diltiazem in Rats

Noriaki OHNISHI,*a Mayako KUSUHARA,a Mutsunobu YOSHIOKA,b Kazuo KURODA,b Akihiro SOGA,a Fumi NISHIKAWA,a Tomokazu KOISHI,a Masato NAKAGAWA,a Satoshi Hori,a Tsuyoshi MATSUMOTO,a Masayuki YAMASHITA,a Shunsaku OHTA,a Koji TAKARA,a and Teruyoshi YOKOYAMAa

a Department of Hospital Pharmacy, Faculty of Pharmaceutical Sciences, Kyoto Pharmaceutical University; 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607–8414, Japan; b Department of Pharmacy, Takarazuka City Hospital; 4–5–1 Kohama, Takarazuka 665–0827, Japan; and c Department of Functional Molecular Chemistry, Faculty of Pharmaceutical Sciences, Kyoto Pharmaceutical University; 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607–8414, Japan.

Received March 24, 2003; accepted June 17, 2003

The effects of Ginkgo biloba leaf extract (GBE), one of the most widely used herbal dietary supplements in Japan, on the pharmacokinetics of diltiazem (DTZ), a typical probe of cytochrome P450 (CYP) 3A, were examined in rats. The simultaneous addition of GBE to small intestine and liver microsomes inhibited the formation of N-demethyl DTZ (MA), an active metabolite of DTZ produced by CYP3A, in a concentration-dependent manner, with an IC50 of about 50 and 182 μg/ml, respectively. This inhibition appeared to be caused, at least in part, by a mechanism-based inhibition. Both the rate of formation of MA and total amount of CYP in intestinal or hepatic microsomes after a single oral pretreatment with GBE (20 mg/kg) decreased transiently. The pretreatment significantly decreased the terminal elimination rate constant and increased the mean residence time, after intravenous administration of DTZ (3 mg/kg). Furthermore, it significantly increased the area under the concentration–time curve and absolute bioavailability after oral administration of DTZ (30 mg/kg). These results indicated that the concomitant use of GBE in rats increased the bioavailability of DTZ by inhibiting both intestinal and hepatic metabolism, at least in part, via a mechanism-based inhibition for CYP3A.

Key words Ginkgo biloba leaf; diltiazem; pharmacokinetic interaction; P450; metabolism; rat

Recently, the demand for functional foods or dietary supplements including herbal remedies, vitamins, minerals, etc., has been steadily increasing with the diffusion of self-medication, as well as alternative and supplemental medicines throughout the world. In such situations, these foods or supplements have frequently been taken with various ethical drugs prescribed for the treatment of many diseases.1) In fact, grapefruit juice2) and St. John’s wort3) have been reported to strongly inhibit and promote, respectively, the activity of cytochrome P450 (CYP) 3A4, the most important isoform related to the oxidative biotransformation of numerous medicines because it is the major or an abundant enzyme in critical tissues such as the small intestine and liver,4,5) and subsequently to affect the pharmacokinetics of drugs.6) However, there is far less information about the pharmacokinetic interactions between functional foods or supplements and medicines than that between pairs of drugs.7) Accordingly, to prevent adverse reactions dependent on potential interactions or to utilize available interactions clinically, detailed investigations of the interactions between functional foods and medicines are urgently required.

Standardized Ginkgo biloba leaf extract (GBE) has been widely used as a botanical dietary supplement in Japan as well as the United State or a phytomedicine in many countries in Europe in recent years, while the seeds are commonly employed in traditional Chinese herbal medicine.8,9) The primary active components of GBE include flavonoid glycosides and various unique diterpenes such as ginkgolides which are potent inhibitors for platelet activating factor.9) Clinical studies have indicated that GBE exhibits therapeutic effects in a variety of disorders including Alzheimer’s disease, failing memory, age-related dementias, etc. Side effects of GBE are very rare and consist of mild gastric upset, headache and allergic skin reactions.8) On the other hand, it was reported as clinical cases that GBE given with aspirin, warfarin or trazodone was associated with spontaneous haemorrhage, intracerebral haemorrhage and acute depression, respectively.10,11) Budzinsky et al.12) and Umegaki et al.13) reported that commercial GBE significantly inhibited human CYP3A4 and rat CYP3A activities in vitro, respectively, whereas the feeding of GBE for 4 weeks markedly induced CYP3A1 and CYP3A2 mRNA expression, weakening the hypotensive effect of nicardipine in rats.14) However, the possibility of pharmacokinetic interactions between GBE and drugs metabolized by CYP3A in animals or humans remained unclear.

Therefore, in this study, the inhibitory effects and mechanism of action of GBE against CYP3A activity estimated from the formation of N-demethyl diltiazem (MA), an active metabolite,15) from diltiazem (DTZ), a typical substrate for CYP3A16–19) and flow-limited drug in both rats and humans20) were examined using rat small intestine and liver microsomes. We also examined the effects of single oral pretreatment with GBE on the activity and the total amount of CYP in both microsomes and the pharmacokinetics of DTZ and MA after intravenous and oral administrations of DTZ to rats.

MATERIALS AND METHODS

Chemicals GBE (Ginkgolon-24; Lot No. 270009030), ginkgolide A, ginkgolide B, ginkgolide C and bilobalide...
powders were kindly provided by Tokiwa Phytochemical Co., Ltd. (Chiba, Japan). GBE was produced in a standard fashion by extraction from the milled leaves with ethanol. The final quality of this extract was assured by maintaining the prescribed range of index components (over 24% flavonoid glycosides and 6% terpene lactones and less than 1 ppm ginkgolic acids), and the yield was about 2%. The GBE contained 1.80% ginkgolide A, 0.85% ginkgolide B, 1.09% ginkgolide C and 2.32% bilobalide. The DTZ hydrochloride and imipramine hydrochloride (an internal standard for HPLC analysis) used were purchased from Wako Pure Chemical Ind., Ltd. (Osaka, Japan). The MA hydrochloride was synthesized from DTZ hydrochloride at the Department of Functional Molecular Chemistry in our university. Ketonezole, quercetin and kaempferol were purchased from Sigma Chemical Co. (St. Louis, MO, U.S.A.). NADP, glucose-6-phosphate and glucose-6-phosphate-dehydrogenase were purchased from Oriental Yeast Co., Ltd. (Tokyo, Japan). All other chemicals were reagent- or HPLC-grade commercial products.

Animals

Nine-week-old male Wistar rats (Japan SLC, Inc., Hamamatsu, Japan), weighing 220—280 g, were used throughout this study. All animal experimental protocols described below were approved by the Experimental Animal Research Committee at Kyoto Pharmaceutical University.

Preparation of Small Intestine and Liver Microsomes

Small intestine and liver microsomes were prepared using normal rats or rats treated with a GBE solution. Briefly, the GBE (20 mg/kg) was administered orally, and then the small intestine and liver were excised 1, 6, 12 and 24 h after the treatment. Small intestine and liver microsomes were prepared by a slight modification of the EDTA-separation of enterocytes and ultracentrifugation procedures reported by Mohri and Uesawa and the conventional method using differential centrifugation by Omura and Sato, respectively. Protein concentrations in microsomes were determined by the method of Lowry et al with bovine serum albumin as the standard.

Enzyme Activity Assay

The formation rate of MA from DTZ was measured in a similar manner to that reported by Murray and Butler. Briefly, the reaction mixture contained 30 μl of 5 or 10 mg protein/ml microsomes (final concentration: 0.5 or 1.0 mg protein/ml), 10 μl of 18 mM NADP (0.6 mM), 10 μl of 180 mM glucose-6-phosphate (6 mM), 10 μl of 60 units/ml glucose-6-phosphate dehydrogenase (2 units/ml), 150 μl of 200 mM phosphate buffer (100 mM, pH 7.4) containing 2 mM EDTA (1 mM) and 30 μl of distilled water. In the conventional experiment, the reaction was started by addition of 30 μl of 250 μM DTZ (25 μM) with 30 μl of distilled water or with various concentrations of GBE solution before preincubation at 37°C for 1 min (for 10 min in the examination on the inhibitory mechanism of action). The total volumes of the incubation mixtures were adjusted to 300 μl. Tubes including the whole mixtures were incubated in a shaking water bath (100 strokes/min) at 37°C for 3 or 5 min. The relationship between MA formed and incubation time was linear up to 10 min. The reaction was terminated by adding 500 μl of ice-cold ethyl acetate and cooling to 0°C. The preincubation of small intestine or liver microsomes with an NADPH-generating system alone at 37°C for at least 10 min did not affect the rate of formation of MA in the subsequent incubation.

Preincubation Experiments of Liver Microsomes with GBE

The incubation mixture containing liver microsomes (150 μg) were preincubated with GBE (200 μg/ml), an NADPH-generating system or both GBE and an NADPH-generating system in a shaking water bath (100 strokes/min) at 37°C for 10 min. Then, subsequent incubations were performed in the incubation mixture containing preincubated microsomes, an NADPH-generating system and DTZ (25 μM) without or with GBE at 37°C for 3 min, under various conditions as shown in Fig. 3. The final volumes of the incubation mixtures were adjusted to 300 μl. The reaction was terminated as described above.

CYP and Cytochrome b₅ Assays

The amounts of CYP or cytochrome b₅ in intestinal and hepatic microsomes were estimated by the conventional method of Omura and Sato.

Pharmacokinetic Experiments

The left carotid artery of each rat was cannulated with polyethylene tubing (PE-50; Clay Adams, Dickinson & Co., Parsippany, NJ, U.S.A.) under anesthesia the day before the pharmacokinetic experiment. The animals were fasted but allowed free access to water for 18 h before the administration of drugs. A 2% (w/v) arabic gum solution (vehicle) or GBE suspended in the vehicle (20 mg/kg) was administered orally via gastric intubation to unanaesthetized rats, and then DTZ dissolved in water was administered at bolus doses of 3 or 30 mg/kg intravenously or orally, respectively, 1 h after the pretreatment. Considering the difference in metabolic clearance between rats and humans, the oral doses of GBE and DTZ in this study were designed to be about 10-fold of those per day to humans. Blood samples (0.25 ml) were collected through the cannula in heparinized plastic microcentrifuge tubes (1.5 ml) before and at 0.05, 0.083, 0.167, 0.333, 0.5, 0.75, 1, 1.5 and 2 h (i.v.) or 0.083, 0.167, 0.25, 0.5, 1, 1.5 and 2 h (p.o.) after drug administration. The samples were centrifuged at 13000 rpm for 3 min at room temperature in a Centrifuge 5415C (Eppendorf GmbH, Germany), and the plasma fraction was frozen at −80°C until the assay. The assays were performed within 1 week of collection.

Assays of DTZ and MA

The assay of DTZ and MA was conducted by means of the HPLC-UV method reported by Murray and Butler with a slight modification as follows. The sample (800 μl) in which the reaction was stopped with ethyl acetate as previously indicated in the enzyme activity assay or the plasma (100 μl) pretreated with 500 μl of ethyl acetate immediately before the assay was placed in a glass tube (10 ml), and then 200 μl or 100 μl of imipramine solution (internal standard; 15 or 100 μM for microsomes or plasma, respectively), 200 μl of distilled water, 1 g of solid NaHCO₃ (for microsomes) or 200 μl of a 7.5 w/v% NaHCO₃—distilled water solution (for plasma), and ethyl acetate (5 ml) were added. After vortex mixing for 30 s, the mixture was centrifuged at 3000 rpm for 15 min. Then, the organic phase (4.5 ml) was also extracted with 200 μl of 10 mM HCl, and the water phase (150 μl) was transferred to another tube and evaporated to dryness at 40°C under a stream of nitrogen. The residue was completely reconstituted with 100 μl of 2 mM HCl, and then 20 or 40 μl of the sample was injected into an HPLC apparatus (LC-6A; Shimadzu, Kyoto, Japan) equipped with a column oven (CTO-6A; Shimadzu) and an ultraviolet detector (SPD-6A; Shimadzu). The
conditions for analysis were as follows: column size, 25 cm×4.0 mm i.d.; packing, STR ODS-II (Shinwa Chemical Industries, Ltd., Kyoto, Japan); mobile phase, 50 mM KH₂PO₄–acetonitrile–triethylamine (70 : 28.8 : 0.2, pH 5.9); column temperature, 40 °C; flow rate, 1.0 ml/min; wavelength, 238 nm; and sensitivity, 0.00125 a.u.f.s. The retention times for DTZ, MA and imipramine were ca. 16, 11 and 21 min, respectively. The calibration curves for DTZ (0.05—4.0 µg/ml) and MA (0.2—5.0 µM or 0.05—3.0 µg/ml) showed good linearity (R²>0.999).

Pharmacokinetic Analysis The peak plasma concentration (Cmax) and the time to reach Cmax (Tmax) of DTZ and MA were determined from the actual data obtained after intravenous or oral administration. The terminal elimination rate constant (λ) was calculated by fitting individual data for three terminal points of the plasma concentration profile with a log-linear regression equation using the least-squares method. The corresponding elimination half-life (t1/2,λ) was calculated by dividing ln2 by λ. The areas under the plasma concentration–time curves from zero to infinity (AUC₀–∞) for DTZ and MA were calculated by means of the trapezoidal rule with extrapolation to infinity with λ. The mean residence time from zero to infinity (MRT) for DTZ and MA was estimated by moment analysis. The absolute bioavailability of DTZ after oral administration (F) was estimated as follows: (AUC₀–∞(i.v.))/(AUC₀–∞(p.o.)×Dp.o.)×100.

Statistical Analysis Data are expressed as the mean±standard error (S.E.). Comparisons between two groups and among more than three groups were performed using the unpaired Student’s t-test and repeated or non-repeated measures analysis of variance (ANOVA) followed by Fischer’s PLSD test, respectively, with StatView J5.0 for Macintosh (Abacus Concepts Inc., Berkeley, CA, U.S.A.), and differences were considered statistically significant when p<0.05.

RESULTS

Inhibitory Effects of GBE on CYP3A Activity in Microsomes GBE inhibited the in vitro formation of MA from DTZ by small intestine and liver microsomes in a concentration-dependent manner (Fig. 1). The 50% inhibitory concentration (IC₅₀) for small intestine was estimated to be approximately 50±16 µg/ml. In the case of liver, the IC₅₀ was about 182±13 µg/ml. These two values were significantly different. Also, ketoconazole (25 µM), a typical inhibitor of CYP3A, strongly inhibited the formation of MA in both microsomes, as well as at 1000 µg/ml of GBE (data not shown). The intact rates of the control in intestine and liver microsomes were 0.125 and 0.918 nmol/min/mg protein, respectively.

Inhibitory Mechanism of Action against CYP3A Activity by GBE The inhibitory mechanism of action against DTZ N-demethylation when GBE was simultaneously added was examined using hepatic microsomes. As shown in Fig. 2, based on Lineweaver–Burk plots, the mode of inhibition for CYP3A was estimated to be essentially competitive at 100 and 200 µg/ml GBE, concentrations near the IC₅₀. In contrast, the inhibition observed at 500 µg/ml GBE was determined to be mixed with both competitive and non-competitive modes.

To elucidate whether these inhibitory actions were based on an irreversible and mechanism-based inhibition, we examine the effects of preincubation under various conditions on the formation of MA by liver microsomes. As shown in Fig. 3, the rate of formation of MA by hepatic microsomes preincubated for 10 min in an NADPH-generating system with GBE (200 µg/ml) was significantly less than that without GBE. This significant decrease disappeared when the preincubation was performed with no NADPH-generating system.

CYP3A Activities and Levels of Cytochromes in Microsomes after Single Oral Pretreatment with GBE The ef-
Effects of a single oral pretreatment with GBE (20 mg/kg) on the formation of MA from DTZ in rat small intestine and liver microsomes.

In the non-treatment group were comparable with those in the GBE group was markedly lower than that in the control group.

GBE significantly decreased the pharmacokinetic parameters. Pretreatment 1 h before with (20 mg/kg) are shown in Fig. 5, and Table 1 summarizes the pharmacokinetic parameters after intravenous administration of DTZ to rats.

Liver Microsomes

Liver (cytochrome b5 content).

The plasma DTZ and MA concentrations after oral administration of DTZ to rats.

Effects of Single Oral Pretreatment with GBE on DTZ Pharmacokinetics

The plasma DTZ and MA concentration-time curves after intravenous administration of DTZ (3 mg/kg) with or without single oral GBE pretreatment (20 mg/kg) are shown in Fig. 5, and Table 1 summarizes the pharmacokinetic parameters. Pretreatment 1 h before with GBE significantly decreased the λ value and increased the MRT value for DTZ. The C_{max} value for MA in the GBE group was markedly lower than that in the control group ($p<0.05$). There were no significant differences in other values between the two groups. The λ and $t_{1/2}$ values for DTZ in the non-treatment group were comparable with those shown in previous reports.

Furthermore, the effects of a single oral pretreatment with GBE (20 mg/kg) on the plasma concentration of DTZ and MA after oral administration of DTZ (30 mg/kg) were examined (Fig. 6). The plasma concentrations of DTZ or MA in the pretreatment with GBE, while other parameters of DTZ or MA were not significantly different between the two groups.
Table 2. Effects of Single Oral Pretreatment with GBE on the Pharmacokinetic Parameters of DTZ and MA after Oral Administration of DTZ to Rats

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DTZ</th>
<th>Control</th>
<th>GBE</th>
<th>MA</th>
<th>Control</th>
<th>GBE</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{max} (µg/ml)</td>
<td>0.55±0.06</td>
<td>0.92±0.19</td>
<td>1.11±0.21</td>
<td>2.24±0.66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T_{max} (h)</td>
<td>0.12±0.02</td>
<td>0.13±0.02</td>
<td>0.12±0.02</td>
<td>0.14±0.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>λ (h)</td>
<td>0.96±0.08</td>
<td>1.11±0.09</td>
<td>0.61±0.06</td>
<td>0.68±0.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{1/2} (h)</td>
<td>0.75±0.06</td>
<td>0.65±0.05</td>
<td>1.20±0.15</td>
<td>1.28±0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUC_{0-12h} (µg·h/ml)</td>
<td>0.30±0.04</td>
<td>0.67±0.14</td>
<td>1.03±0.18</td>
<td>2.63±0.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MRT (h)</td>
<td>0.90±0.07</td>
<td>1.02±0.13</td>
<td>1.57±0.16</td>
<td>1.77±0.48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F (%)</td>
<td>2.0±0.3</td>
<td>4.6±0.9</td>
<td>——</td>
<td>——</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Each value represents the mean±S.E. of 5 or 6 rats. a) p<0.05 vs each control value (unpaired Student’s t-test). The vehicle (control) or GBE suspension (20 mg/kg) was administered orally to unanesthetized rats, and then the DTZ solution (30 mg/kg) was administered intravenously 1 h later.

DISCUSSION

We have been studying the possibility of pharmacokinetic interactions between functional foods and drugs for several years. Here, we reported the findings of basic research on the pharmacokinetic interactions between GBE, one of the most popular dietary supplements in Japan, and DTZ as a representative substrate for CYP3A as well as a highly extracted drug in rats.

First, the effects of GBE on CYP3A activity were examined in vitro using small intestine and liver microsomes. GBE inhibited CYP3A activities dose-dependently (Fig. 1), and the IC_{50}s in small intestine and liver microsomes were about 50 and 182 µmol/ml, respectively. These results were similar to those obtained using rat liver microsomes reported by Umegaki et al., and indicated that GBE contains an substance(s) that inhibits CYP3A activity. It is already known that GBE contains many kinds of flavonoids such as quercetin and kaempferol, which are very popular, and these compounds inhibit CYP3A activity in vitro. But quercetin (2.4 µg/ml) and kaempferol (6.0 µg/ml) estimated to be contained in GBE at a concentration of 1000 µg/ml did not inhibit the activity of CYP3A in hepatic microsomes (unpublished data). This may be due to much lower concentrations in GBE than the actual inhibitory concentration. In addition, several specific compounds such as ginkgolide A (18.0 µg/ml), ginkgolide B (8.5 µg/ml), ginkgolide C (10.9 µg/ml) and bilobalide (23.2 µg/ml) also have no inhibitory action (unpublished data). Accordingly, further investigation is required to identify the potential inhibitory compound(s). On the other hand, there is a 3.6-fold difference in the IC_{50}s for CYP3A between small intestine and liver microsomes, showing a stronger inhibition in small intestine microsomes. The fact that the CYP content per microsomal protein in the small intestine is much lower than that in the liver may be, at least in part, responsible for this result. Furthermore, this may be attributed to the differences in CYP3A isoforms and the ratio of content between two tissues.

Next, to clarify the inhibitory mechanism of action for CYP3A by GBE, we performed a kinetic analysis of inhibition using hepatic microsomes. From the results of Lineweaver–Burk plots, it was suggested that CYP3A activity was inhibited competitively at low concentrations of GBE below the IC_{50} but both competitively and non-competitively at a concentration above the IC_{50} (Fig. 2). Accordingly, the inhibitory mechanism of action was shown to be non-specific inhibition. It also seemed possible that the apparent non-competitive inhibitory effect of GBE reflects an unusually or irreversibly high affinity for CYP3A such as the CYP isoform-nonselective coordinated binding of some intact inhibitor to the heme moiety of CYP (cimetidine, etc.). and/or a mechanism-based inhibition by a reactive metabolite of inhibitor (grapefruit juice, etc.). Therefore, to determine whether these inhibitory actions were associated with the irreversibly mechanism-based inhibition, the effects of preincubation with or without an NADPH-generating system on the CYP3A activity were examined using liver microsomes (Fig. 3). It was found that the inhibition by GBE was closely related to an NADPH-generating system, indicating the existence of mechanism-based inhibition. This result supports that of the in vitro kinetic analysis indicated above.

Furthermore, we performed detailed experiments ex vivo to confirm the potential of the irreversible inhibitory effect of GBE on CYP3A found in vitro. The CYP3A activities in both small intestine and liver microsomes were transiently (1—12 h) decreased by a single oral administration of GBE (Fig. 4A), corresponding to the decrease in total CYP content (Fig. 4B). These findings indicate that GBE has a significant inhibitory effect on CYP3A even ex vivo, and strongly support our conclusion that CYP3A is inhibited by GBE in part via a mechanism-based inhibition where the content of CYP3A seems to be apparently decreased, resulting in an apparent decrease in total CYP content. The inhibitory effects of GBE on CYP3A activity in both small intestine and liver microsomes disappeared 24 h after pretreatment with GBE (Fig. 4A). This recovery seems to result from the regeneration of CYP3A in each tissue as the total CYP content recovered in parallel.

Finally, the effects of a single oral pretreatment with GBE on the pharmacokinetics after intravenous administration of DTZ were examined in rats. The λ and MRT values for DTZ were decreased and increased, respectively, and the C_{max} value for its metabolite was lowered by the pretreatment with GBE (p<0.05; Fig. 5 and Table 1), indicating that the elimination of DTZ was slightly but significantly delayed. Furthermore, we examined whether single oral pretreatment with GBE affected the pharmacokinetics after oral administration of DTZ to rats. The AUC_{0-12} and F values of DTZ were shown to be increased approximately 2-fold without changes in other pharmacokinetic parameters (p<0.05; Fig. 6 and Table 2), suggesting that GBE reduced presystemic metabolism of DTZ. These results in vivo corresponded to those in vitro and ex vivo. Besides, the ratio of AUC_{0-12} for DTZ in the GBE-pretreated group relative to the control group was larger following the oral than intravenous administration of DTZ. Lee et al. reported that the extraction ratios for DTZ in the small intestine and liver after oral administration to rats were about 85 and 63%, respectively, confirming that DTZ is highly extracted in the small intestine as well as the liver. Based on our findings and these facts, it was suggested that orally administered GBE suppressed in part the presystemic first-pass metabolism of DTZ not only in the liver but also in the small intestine, by inhibiting CYP3A activity in
both tissues. Furthermore, it is known that DTZ is metabolized to deacetyl DTZ (M1), another major metabolite, by esterases in the intestine and liver.\(^{20}\) So, GBE might inhibit the enzymes in addition to CYP3A4. On the other hand, DTZ and M1 have been reported to be substrates for the multidrug transporter P-glycoprotein (P-gp).\(^{31,32}\) The inhibition of intestinal P-gp by GBE might be also responsible for the significantly increased absorption of DTZ after oral coadministration with GBE although there is no evidence of this. Unexpectedly, plasma MA concentrations after oral administration of DTZ tended to be higher in the GBE-pretreated group than that of the control group, unlike in the case of intravenous administration of DTZ. This phenomenon can be accounted for by the following reasons. First, GBE might inhibit CYP3A4 activities in the intestine rather than the liver, resulting in a decreased intestinal absorption rate of DTZ with a little change in the formation rate of MA in the liver. Second, GBE might suppress the subsequent deacetylation of MA in the intestine. Third, MA might be a substrate of P-gp and GBE primarily inhibits intestinal P-gp. Further investigation should be undertaken to clarify these points.

The overall rate of metabolism of DTZ is different between rats and humans, as in the case of many drugs; the oral clearance of DTZ in rats is 60-fold that in humans.\(^{20}\) However, DTZ is classified as a low-limited or highly extracted drug in both species although the absolute bioavailability in rats (2%; see Table 2) is different from that in humans (30—44%).\(^{13}\) The metabolic pathways in rats are qualitatively similar to those in humans,\(^{20,34}\) and the transformation from DTZ to MA is mainly dependent on several CYP3A isoforms such as CYP3A1, 3A2, and CYP3A4 in the rat and human tissues, respectively.\(^{16—19}\) In addition, we confirmed that the IC\(_{50}\) of GBE for CYP3A activity in rat liver microsomes (182±13 μg/ml; Fig. 1) was almost consistent with that in human liver microsomes (159±7 μg/ml; unpublished data), similar to the finding reported by Umegaki et al.\(^{13}\) These facts and results suggest the possibility that GBE is likely to inhibit the first-pass metabolism of DTZ in humans.

In conclusion, it was confirmed that the oral coadministration of GBE and DTZ to rats increased the bioavailability of DTZ by inhibiting both intestinal and hepatic metabolism, at least in part, by a mechanism-based inhibition for CYP3A. The findings appear to provide useful information for future investigations in humans on potential pharmacokinetic interactions between GBE and drugs such as DTZ and other low-limited drugs that are substrates for CYP3A4.

Acknowledgements This work was supported in part by Kampo Science Foundation. The authors thank Dr. Yoshihiro Uesawa at Meiji Pharmaceutical University for technical assistance with the preparation of rat small intestine microsomes. We are grateful to Tokiwa Phytochemical Co., Ltd. for the gifts of GBE, ginkgolide A, ginkgolide B, ginkgolide C and bilobalide powders.

REFERENCES