Aminopeptidases in Health and Disease

Role of Aminopeptidases in the Blood Pressure Regulation

Takashi Mitsui,* Seiji Nomura, Atsuo Itakura, and Shigehiko Mizutani

Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine; 65 Tsurumai-cho, Showa-ku, Nagoya 466–8550, Japan.

Received January 19, 2004

In addition to the neural and autoregulatory factors, blood pressure (BP) is regulated by humoral factors including vasoactive peptides. When evaluating the peptide actions, degradation by proteases should be also considered in addition to the generation of peptides and their receptors. This review describes the roles of aminopeptidase A, placental leucine aminopeptidase and kininase I, which are enzymes responsible for hydrolyzing angiotensin II (AngII), vasopressin (AVP) and bradykinin (BK), respectively, in BP regulation. Especially, we focus on the association of the proteases with preeclampsia, hypertensive disorder peculiar to pregnancy, since one of the representative organs that are rich in theses proteases is placenta. Although the physiological roles of the placental proteases have not been fully understood, several lines of evidence suggest that the proteases are involved in the maintenance of pregnancy homeostasis including fetal and maternal BP regulation through the metabolism of bioactive peptides at the interface between mother and fetus.

Key words blood pressure; peptide hormones; placental protease; aminopeptidase; preeclampsia; hypertension

Blood pressure (BP) is defined as multiplication of cardiac output and vascular resistance. Although various peptides including angiotensin II (AngII), vasopressin (AVP) and bradykinin (BK) are known to affect cardiac output or peripheral vascular resistance, less attention has devoted to the peptide metabolism compared with the numerous studies on the generation of peptides and their receptors. However, since local concentrations of the peptides depend on the balance between synthesis and degradation, proteases also play a pivotal role in the BP regulation and pathogenesis of hypertension.

In this paper, among a number of proteases, we will review the involvement of aminopeptidase A (APA: EC 3.4.11.7), placental leucine aminopeptidase (PLAP: EC 3.4.11.3) and kininase I in BP regulation, especially with focusing on their possible association with preeclampsia, disorder with hypertension peculiar to pregnancy.

RENIN-ANGIOTENSIN SYSTEM (RAS) AND APA

The role of the RAS in the maintenance of BP has been extensively investigated. Angiotensinogen is cleaved by renin to generate inactive decapeptide AngI, which is then converted to AngII by the angiotensin-converting enzyme (ACE). Subsequently, AngII is metabolized into AngIII by other aminopeptidases including aminopeptidase N (APN: EC 3.4.11.2) and PLAP (EC 3.4.11.3) (Fig. 1). Generally AngII is thought to be a principal effector peptide of the RAS, which induces vasoconstriction and increases sodium and water retention thereby leading to an increase in BP.

APA, which hydrolyzes N-terminal acidic amino acid such as aspartic and glutamic acid, is regarded as a principal and important candidate responsible for the conversion of AngII to AngIII. APA, therefore, would be deeply involved in regulating BP through AngII metabolism. The findings that systemic administration of purified APA into spontaneous hypertensive rats (SHRs) or AngII-infused hypertensive rats decreased their BP and that APA inhibitor amastatin elevated BP in normotensive rats support this notion. In addition, our study employing APA knockout mice has demonstrated more direct evidence of APA involvement of BP regulation. The baseline systolic BP was significantly elevated in APA−/− mice (136.3 ± 2.4 mmHg, n = 10) compared with APA+/−/− (117.4 ± 2.0 mmHg, n = 15) and APA+/−/− littermate mice (114.8 ± 2.0 mmHg, n = 9) (p < 0.05) (Fig. 2), suggesting that APA may lower BP through AngII metabolism. Moreover chronic infusion of AngII increased systolic BP to a greater extent in APA−/− mice than APA+/−/− mice. APA deficiency would increase the relative concentrations of functional AngII by protecting AngII from the degradation, leading to modest, but sustained BP elevation and hypersensitivity to AngII. Thus APA plays a critical and indispensable role in maintaining BP homeostasis. With respect to AngII metabolism, APA-deficient mice also suggest that other enzymes that can metabolize AngII in vitro, including neutral endopeptidase (EC 3.4.24.11), prlylendopeptidase (EC 3.4.24.11), etc. ANGII

Key words blood pressure; peptide hormones; placental protease; aminopeptidase; preeclampsia; hypertension

Fig. 1. Schematic Representation of the Relation between RAS and Proteases

* To whom correspondence should be addressed. e-mail: t-mitsui@med.nagoya-u.ac.jp © 2004 Pharmaceutical Society of Japan
3.4.21.26), and the recently-described angiotensin converting enzyme 2 (ACE2). do not appear to compensate effectively for the loss of APA in BP regulation.

Recently another enzyme that may be involved in AngII metabolism has been identified. Adipocyte-derived leucine aminopeptidase (A-LAP) is a novel member of the M1 family of zinc-metallopeptidases that shares high homology with P-LAP.[12] Based on the findings that A-LAP hydrolyzes AngII and kallidin and that A-LAP is expressed in the cortex of the human kidney, where tissue kallikrein is localized,[13] A-LAP seems to play a role in the decrease of BP through the inactivation of AngII and/or the generation of BK that can induce hypotension by arterial vasodilation in the kidney. In support of this notion, the Lys528Arg polymorphism in the ALAP gene is reported to show significant association with essential hypertension.[14] The estimated odds ratio for essential hypertension was 2.3 for presence of the Arg allele at codon 528, in comparison with presence of the Lys/Lys genotype. And further, treatment of AngII type 1 receptor (AT1) antagonist irbesartan to the patients with the Arg/Arg genotype caused two-fold greater regression of left ventricular mass index than those with the Lys/Lys genotype.[15]

However, in contrast to this possible role of A-LAP as angiotensinase, a recent finding that A-LAP trims precursor peptides to MHC class I molecules[16] may suggest that the chief role of A-LAP is intracellular function as a key component of the MHC class I antigen-presenting pathway.

However, rather unexpectedly, clinical study examining serum APA activity in humans demonstrated that hypertensive women have higher serum APA activity than age-matched normotensive women.[17] On the relation between serum AngII concentrations and hypertension, no definitive results have been proposed until now. These findings may be interpreted by the speculation that tissue RAS plays a critical role in hypertension, which does not always parallel systemic RAS. Since AngII treatment increases APA expression in vitro,[18] we could also speculate that activation of tissue RAS increases local AngII levels, which induces APA activity and elevate BP in hypertensives.

It should be noted that the biological activity of AngII and AngIII, that is the function of APA, differs between in the peripheral tissues and central nervous system (CNS). Peripherally AngIII is less potent than AngII in enhancing local vasoconstriction, steriodogenesis, water and electrolyte absorption as well as elevating arterial BP. However, cerebroventricular infusion of purified APA to rats increased BP,[19] suggesting that AngIII may be more effective peptide in CNS than AngII in elevating BP. In accordance with this finding, Llorens-Cortes and her group developed and cerebroventriculally administered APA specific inhibitor EC33 or APN inhibitor PC18 to rats.[20] EC33 that prevents the generation of AngIII decreased BP and PC18 that prolongs half-life of AngIII increased BP, suggesting that AngIII plays a predominant role in the brain in increasing BP.

APA roles in the BP regulation and pathogenesis of preeclampsia, hypertensive disorder of pregnancy, are also intensely investigated. Since human fetuses produce equal or higher levels of various vasoactive peptides such as AngII and AVP compared with mothers along with their growth or in response to various stresses,[21] placental proteases could metabolize excessive peptides derived from the fetus as a barrier between the mother and fetus. Indeed clinically, APA activity in maternal serum increases during normal pregnancy possibly to maintain feto-maternal homeostasis. Interestingly, in patients with preeclampsia APA activity shows biphasic changes.[23,24] In mild preeclamptic patients, serum APA activity rather elevates above normal range, which may indicate the counteraction to the activated RAS; when preeclampsia gets worse, APA activity decreases, which may accelerate the increase in BP. In addition to the higher BP at basal state, preeclamptic patients are generally sensitive to the pressor effect of AngII contrary to the refractoriness in normal pregnant women. Hypersensitivity to exogenously infused AngII is also observed in APA-deficient mice,[8] suggesting that APA may play a critical role in acquiring the refractory activity to AngII. Possible association of APA with hypertensive state and lack of refractoriness to AngII in preeclampsia is also investigated using SHRs.[25] SHRs showed lower APA activity than control Wister-Kyoto (WKY) rats in the kidney, a major APA production site, probably contributing to chronic hypertension of SHRs. Infused AngII increased BP in non-pregnant compared with pregnant WKY, while SHR showed little response to AngII whether pregnant or not. Renal APA activity significantly increased in pregnant than non-pregnant SHRs, while not apparently differ between pregnant and non-pregnant WKY rats.

PLACENTAL LEUCINE AMINOPEPTIDASE (P-LAP)

P-LAP is the only known membrane aminopeptidase that opens the N-terminal cystine ring structure of small peptides such as oxytocin and AVP.[4,26] In addition, P-LAP is able to hydrolyze AngIII. [4] Contrary to the previous belief that P-LAP is limited to placenta, northern blot analysis[27] and immunohistochemistry[28] have shown that P-LAP has a broad tissue distribution other than placenta. cDNA cloning of P-LAP has demonstrated that this enzyme is a homologue of rat insulin-regulated membrane aminopeptidase (IRAP), which is present in the glucose transporter isotype GLUT4 vesicles of rat adipocytes.[29] P-LAP, therefore, seems to play
a role in BP regulation via hydrolyzing AVP and AngIII in non-pregnant human as well as pregnant women. However currently, studies of P-LAP associated with BP regulation mainly focus on pregnant women.

In human placenta, P-LAP is predominantly expressed in differentiated trophoblasts, which is regulated by AP-2 and Ikaros transcriptional factors. Membrane-bound P-LAP is released into maternal blood flow via proteolytic cleavage by metalloproteases such as ADAMs, a disintegrin and metalloproteinases. During normal pregnancy, P-LAP activity in maternal serum gradually increases to the maximum at near term, which may be associated with the maintenance of pregnancy homeostasis and the onset of labor pains. P-LAP activity is rather elevated in preeclamptic patients while preeclampsia is mild, but it sharply decreases when preeclampsia turns severe, which is the finding similar to APA. Since P-LAP substrate peptide AVP plays an important role in the fetal cardiovascular response to stress, P-LAP increase in maternal serum seems to counteract the increased fetal secretion of AVP at the interface between mother and fetus. To support this, P-LAP activity is inversely associated with the pulsatility index measured by a pulsed Doppler method, which reflects the constriction of placental vessels, in severe preeclamptic patients.

CONCLUSIONS AND PERSPECTIVES

Figure 3 illustrates the role of placental proteases in regulating uteroplacental blood flow. Placental proteases play important roles in regulating fetal and maternal BP through controlling the concentrations of vasoactive peptides at the interface between mother and fetus.

The use of ACE inhibitors to preeclamptic patient, which could easily pass through placenta, is known to cause intrauterine growth retardation (IUGR), severe disturbance of fetal renal dysfunction, and sometimes intrauterine fetal death, partly due to severe drug-induced fetal hypotension. Considering the mechanism for the maintenance of uteroplacental circulation, novel drugs that control the bioactivity of vasoactive peptides but do not go through placenta are promising. Placental proteases would serve as a novel therapeutic target for preeclampsia.

REFERENCES