Piceatannol Inhibits Melanogenesis by Its Antioxidative Actions

Takako YOKOZAWAa and You Jung KIMa,b

a Institute of Natural Medicine, University of Toyama; 2630 Sugitani, Toyama 930–0194, Japan; and b Department of Dental Hygiene, Busan Women’s College; Busanjin-Gu, Busan 617–734, Korea.

Received April 6, 2007; accepted August 20, 2007; published online August 21, 2007

In our efforts to find new skin lightening agents, piceatannol (PICE) was investigated for its antioxidative property and ability to inhibit melanogenesis. In this study, PICE’s effect on inhibition of mushroom tyrosinase, and tyrosinase inhibiting activity and melanin content were assessed utilizing the B16F10 melanoma cell (B16 cell) culture system. Results indicated that PICE has a strong antityrosinase activity (IC\textsubscript{50}=1.53 \mu M). To evaluate the relative efficacy of PICE compared to other tyrosinase inhibitors, its inhibitory effect was compared and showed that PICE was significantly stronger than kojic acid (IC\textsubscript{50}=50.1 \mu M) and resveratrol (IC\textsubscript{50}=63.2 \mu M). Furthermore, PICE was shown to down-regulate melanin content. To document PICE’s antioxidative property, which is known to influence melanogenic activity, we assessed reactive species (RS) generation, reduced glutathione (GSH) and oxidized glutathione (GSSG) levels in these B16 cells. The results showed that PICE suppressed RS generation and enhanced the GSH/GSSG ratio. In conclusion, our results indicated that the antimelanogenic action of PICE is likely exhibited by the combined effect of PICE’s antioxidative property and its ability to suppress RS generation while increasing the GSH/GSSG ratio.

Key words piceatannol; melanogenesis; tyrosinase; antioxidative property; reduced glutathione/oxidized glutathione ratio

Melanin is the pigment giving characteristic color to the skin and hair, and is synthesized in melanosomes transferred from melanocytes. Although melanin plays an important protective role against UV light, over production and accumulation of melanin pigment it could create serious skin problems such as freckles, age spots, and melasma.11 Thus, the inhibition of melanogenesis has been the focus of medicinal and cosmetic treatments for skin depigmenting and lightening.

Melanogenesis that is regulated by the key enzyme, tyrosinase, is also affected by other non-enzymatic factors such as ultraviolet rays and \(\alpha\)-melanocyte-stimulating hormone (\(\alpha\)-MSH).2 Tyrosinase (monophenol monooxygenase, EC 1.14.18.1), also known as polyphenol oxidase is an enzyme that catalyzes the oxidation of monohydric phenols (\textit{e.g.} such as tyrosine).13 During melanogenesis, if free radicals are improperly processed, hydrogen peroxide is produced, causing production of more damaging hydroxyl radicals and other reactive oxygen species.4

It has been reported that antioxidants or compounds with redox properties can inhibit or delay hyperpigmentation,5 and that reduced glutathione (GSH), an important biological reductant, is involved in regulation of melanin synthesis.6 Our recent study characterized the antimalanogenic action of 4,4’-dihydroxybiphenyl, which is likely carried out by a combined effect of its antioxidative property and ability to increase intracellular GSH levels.7

In the past, many depigmenting substances, including phenolic compounds8–10 and stilbene derivatives,11,12 have been reported to have skin whitening effects. Piceatannol (PICE; 3,5,3’,4’-tetrahydroxy-trans-stilbene) and resveratrol (RES; trans-3,5,4’-trihydroxystilbene) are phenolic compounds that occur naturally in grapes and red wine.13 RES is known to have antioxidative, estrogenic, and anti-cancer properties.14 Its natural metabolite, the RES analogue, piceatannol (PICE) is reported to possess antioxidative, anti-tumorigenic, and apoptosis-inducing effects.15 However, PICE’s inhibitory effect on melanogenesis has not been reported to date. This study compares the inhibitory effect between PICE and RES against melanogenesis. The effect of PICE on the inhibition of mushroom tyrosinase was evaluated. Additionally, tyrosinase inhibiting activity and melanin content were assessed in B16F10 melanoma cells (B16 cells).

To elucidate the underlying process by which PICE inhibits tyrosinase activity and melanogenesis, PICE’s effect on reactive species (RS) generation and GSH and oxidized glutathione (GSSG) ratio were assessed.

MATERIALS AND METHODS

Materials PICE, RES, \(\alpha\)-MSH, and all other chemical reagents were purchased from Sigma Chemical Co. (St. Louis, MO, U.S.A.).

Cell Culture B16 cells were purchased from Korean Cell Line Bank (Seoul, Korea) were cultured in DMEM with 10% fetal bovine serum (FBS; Gibco, NY, U.S.A.) and penicillin/streptomycin (100 IU/50 \mu g/ml) in a humidified atmosphere containing 5% CO\textsubscript{2} in air at 37 °C. B16 cells were cultured in 24-well plates for each assay. All the experiments were performed in triplicate and repeated three times to ensure reproducibility.

Studies on the Inhibitory Effect of PICE and RES on Tyrosinase Activity. a) Mushroom Tyrosinase Activity To estimate the inhibitory action of PICE and RES on tyrosinase, tyrosinase isolated from mushroom was utilized as described previously with a minor modification.16 Briefly, 20 \mu l of aqueous solution of mushroom tyrosinase (1000 units) was added to a 96-well microplate, in a total volume of 200 \mu l assay mixture containing 1 mm L-tyrosine solution, against melanogenesis. The effect of PICE on the inhibition of mushroom tyrosinase was evaluated. Additionally, tyrosinase inhibiting activity and melanin content were assessed in B16F10 melanoma cells (B16 cells).
were plated in a 24-well plate. After cells were exposed to 24 h with or without PICE at concentrations ranging from 5 to 100 μM, the IC50 is the concentration of a drug that inhibits a standard response by 50%. The IC50 is a value derived from the X-axis. It is determined from the alignment of the dose response curve on the dependent Y-axis. In the current study, to determine the IC50 of a drug, dose-dependent inhibition experiments were performed in triplicate. We determined the log-linear curves and their equations based on the inhibition percentages at three doses for each experiment. Then, we calculated individual IC50 when Y-axis showed 50% of the inhibition percentage.

b) Murine Tyrosinase Activity
Tyrosinase activity in B16 cells was assessed by measuring the rate of oxidation of l-3,4-dihydroxyphenylalanine (l-DOPA).16 Cells were plated in 24-well dishes at a density of 5 × 10^4 cells/ml. B16 cells were incubated in the presence or absence of 100 nM α-MSH and then treated for 24 h at various concentrations of PICE and RES. The cells were lysed in 100 μl of 50 mM sodium phosphate buffer (pH 6.8) containing 1% Triton X-100 and 0.1 mM phenylmethylsulfonyl fluoride and then frozen at −80 °C for 30 min. After thawing and mixing, cellular extracts were clarified by centrifugation at 12,000 × g for 30 min at 4 °C. The supernatant (80 μl) and 20 μl of l-DOPA (2 mg/ml) were placed in a 96-well plate, and the absorbance at 492 nm was read every 10 min for 1 h at 37 °C using an ELISA plate reader.

Evaluation of Melanogenesis in B16 Cells
Determination of melanin content was performed using a modified method of Bilodeau et al.17 In brief, B16 cells (5 × 10^4) were plated on 24-well multi-dishes and incubated in the presence or absence of 100 nM α-MSH and then treated for 24 h at various concentrations of PICE or RES. After cell viability assay using MTT for B16 cells are given in Fig. 2. At growth doses of 5, 100, 200, and 400 μM of PICE, cell viability was 99.8, 98.7, 95.3, and 90.1%, respectively during a 24 h treatment. These data clearly showed the non-cytotoxic nature of PICE in B16 cells.

Table 1 reveals the results of the inhibition of mushroom tyrosinase activity by PICE, RES and kojic acid. Data show that the inhibitory potency of PICE on mushroom tyrosinase was dose-dependent. A low IC50 value (1.53 μM) indicates that the potency was significantly higher than that of kojic acid (IC50 = 50.1 μM), which was used as a reference compound. In addition, PICE showed more potent efficacy than RES (IC50 = 63.2 μM).

RESULTS

Table 1. Effects of PICE, RES and Kojic Acid on Mushroom Tyrosinase Activity

<table>
<thead>
<tr>
<th>Compound</th>
<th>IC50 (μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PICE</td>
<td>1.53</td>
</tr>
<tr>
<td>RES</td>
<td>63.2</td>
</tr>
<tr>
<td>Kojic acid</td>
<td>50.1</td>
</tr>
</tbody>
</table>

Fig. 2. The Effects of PICE on the Viability of B16 Cells
Cells were treated with various doses of PICE and RES (50–400 μM) and were examined by MTT assay. Data are expressed as % of cell viability.
Enzyme assay was performed as described in Materials and Methods. Results are expressed as percentages of control, and data are the mean ± S.E.M. of at least three determinations. ∗ Significantly different from the α-MSH-treated control group (p < 0.05, ** p < 0.01, *** p < 0.001). ∗∗∗ Significantly different from the α-MSH-untreated control group (p < 0.001).

The cells were cultured to sub-confluence then incubated for 24 h in the presence of PICE and RES, then assayed for GSH and GSSG levels, as detailed in Materials and Methods. Each value represents the mean ± S.E.M. of three determinations. ∗ Statistically significant difference in comparison with control group. ∗ p < 0.05, ** p < 0.01, *** p < 0.001.

Table 2. Effects of PICE, RES and Trolox on RS Generation

<table>
<thead>
<tr>
<th>Group</th>
<th>RS generation (fluorescence/min/mg protein)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>9.60 ± 0.46</td>
</tr>
<tr>
<td>PICE (5 μM)</td>
<td>2.83 ± 1.13**</td>
</tr>
<tr>
<td>PICE (10 μM)</td>
<td>1.77 ± 1.03***</td>
</tr>
<tr>
<td>PICE (50 μM)</td>
<td>0.92 ± 0.45***</td>
</tr>
<tr>
<td>RES (5 μM)</td>
<td>8.92 ± 0.97</td>
</tr>
<tr>
<td>RES (10 μM)</td>
<td>6.55 ± 0.91*</td>
</tr>
<tr>
<td>RES (50 μM)</td>
<td>5.10 ± 0.33**</td>
</tr>
<tr>
<td>Trolox (5 μM)</td>
<td>8.87 ± 0.22</td>
</tr>
<tr>
<td>Trolox (10 μM)</td>
<td>7.22 ± 0.67</td>
</tr>
<tr>
<td>Trolox (50 μM)</td>
<td>6.02 ± 0.75*</td>
</tr>
</tbody>
</table>

Table 3. Effects of PICE and RES on GSH and GSSG Levels and Their Ratio

<table>
<thead>
<tr>
<th>Group</th>
<th>GSH (μmol/mg protein)</th>
<th>GSSG (μmol/mg protein)</th>
<th>GSH/GSSG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>7.11 ± 0.98</td>
<td>0.98 ± 0.89</td>
<td>7.59 ± 0.76</td>
</tr>
<tr>
<td>PICE (5 μM)</td>
<td>31.3 ± 5.79**</td>
<td>0.76 ± 0.07*</td>
<td>41.4 ± 12.3*</td>
</tr>
<tr>
<td>PICE (10 μM)</td>
<td>60.1 ± 8.88**</td>
<td>0.49 ± 0.03**</td>
<td>121 ± 20.6*</td>
</tr>
<tr>
<td>PICE (50 μM)</td>
<td>83.4 ± 10.4***</td>
<td>0.23 ± 0.06**</td>
<td>367 ± 121*</td>
</tr>
<tr>
<td>RES (5 μM)</td>
<td>7.29 ± 0.93</td>
<td>0.99 ± 0.13</td>
<td>7.32 ± 1.10</td>
</tr>
<tr>
<td>RES (10 μM)</td>
<td>7.91 ± 0.04</td>
<td>0.89 ± 0.05*</td>
<td>8.89 ± 0.10*</td>
</tr>
<tr>
<td>RES (50 μM)</td>
<td>10.2 ± 0.39*</td>
<td>0.67 ± 0.04</td>
<td>15.1 ± 0.41**</td>
</tr>
</tbody>
</table>

The cells were cultured to sub-confluence then incubated for 24 h in the presence of PICE and RES, then assayed for GSH and GSSG levels, as detailed in Materials and Methods. Each value represents the mean ± S.E.M. of three determinations. ∗ Statistically significant difference in comparison with control group. ∗ p < 0.05, ** p < 0.01, *** p < 0.001.

DISCUSSION

The inhibition of melanogenesis can be useful not only for cosmetic as skin-whitening purposes, but also for the treatment of abnormal pigmentation. In the present study, we provide the first evidence that PICE has a potent antime-
lantanogenic and antioxidative effects in B16 cells.

Figure 1 indicates the chemical structure of PICE compared with that of RES. RES is reported to have a tyrosinase inhibitory effect.23) In current work, PICE and RES were compared for their tyrosinase inhibitory effect, with the result that PICE showed a more powerful tyrosinase inhibitory effect with the IC_{50} value of 1.53 \mu M, which was higher than RES at a value of IC_{50}=63.2 \mu M. To evaluate the relative efficacy of PICE compared to other tyrosinase inhibitors, its inhibitory effects were compared with the well-known tyrosinase inhibitor, kojic acid,23) showing that PICE was significantly stronger than kojic acid (IC_{50}=50.1 \mu M).

The efficacy of inhibitory PICE may well be attributed to its phenolic structure with multiple hydroxyl groups. The structural significance of the phenol ring configuration in inhibitory actions was reported, as shown with hydroxystilbene compounds like oxyresveratrol for tyrosinase inhibitory actions was reported, as shown with hydroxystilbene compounds for tyrosinase inhibitory actions.25) The stronger inhibitory action demonstrated by PICE may be related to the two hydroxy groups located at the C’-3 and C’-4 position, an important structural factor for tyrosinase inhibition.26)

In our work, we examined and compared the inhibitory effect of PICE and RES on murine tyrosinase activity (Fig. 3) and found that PICE and RES effectively inhibited the tyrosinase activity compared to the \(\alpha \)-MSH-treated control group. We also examined the melanin content of cultured B16 cells in the presence of PICE and RES, and found that melanin content was effectively inhibited in a dose-dependent manner for each. In support of the mechanism by which PICE inhibits tyrosinase, we found that PICE and RES down-regulated the melanin synthesis. Our data verified our previous findings10) and others25) that the restraint of melanogenesis in B16 cells is characterized by the inhibition of tyrosinase.

The data on mushroom tyrosinase inhibition and inhibition of tyrosinase and melanin content in B16 cells indicate that PICE had more powerful effect than RES, as the more hydroxyl groups the stilbene have, the stronger the melanogenic inhibitory activity. These data are consistent with other findings3) that the inhibitory potency of the hydroxystilbene compounds is markedly enhanced by the number of hydroxy groups on the phenolic ring. Because safety is a primary concern for skin lightening agents, the possible cytotoxicity of PICE was examined using B16 cells that were exposed to various concentrations of PICE. Figure 2 reveals that the cell viability was not compromised at any concentration tested compared with the untreated control.

To establish whether antimelanogenic activity is related to antioxidative properties of PICE, we quantitated RS generation and GSH and GSSG levels. As shown in Table 2, RS generation was inhibited by PICE in a concentration-dependent manner. PICE’s effect may be related to not only the additional hydroxy group, but also contain ortho-(3’,4’)-dihydroxy groups that might play an important role in RS suppression. This result verifies previously reported data showing a potent scavenging effect of PICE.26)

Additionally, the effects of PICE on the GSH/GSSG ratio show that intracellular GSH levels in B16 cells were enhanced by PICE, while GSSG levels were down-regulated. Consequently, the GSH/GSSG ratio was increased by PICE, presenting an elevated intracellular reducing power that is expected to play a crucial role in the regulation of melanogenesis. Our data on increased GSH levels are in agreement with our previous report27) and correlated with those of another investigator who reported that GSH gives a novel state of interrupted melanogenesis in that melanization can’t progress despite the complete formation of melanosome matrix structure and the deficiency of inhibition of cellular metabolism including protein glycosylation.28) It is worth speculating on the possible explanation for the enhanced GSH level: A possibility of a direct action on GSH synthesizing enzymes or suppressing degradation of GSH by PICE.

Phenolic hydroxy compound may show antioxidative activity because of its ability to donate an electron and/or chelate transition metals, such as copper or ferrous ions, thereby inhibit free radical reactions and diminish RS generation.29)

One of the interesting findings of our study is that the potency of PICE is likely related to its dual efficacy on antimelanogenic and antioxidative activities. In summary, our study demonstrated that PICE inhibited tyrosinase activity and was able to decrease melanin content without showing any adverse effect on cell viability. Moreover, PICE showed antimelanogenic effects. These melanogenesis inhibitory activities paralleled the results of antioxidative activities. These stronger antimelanogenic and antioxidative actions of PICE are ascribed to its structural arrangement.

Acknowledgements The assistance of Ms. Corinne Price is greatly appreciated for the editing of this manuscript.

REFERENCES

18) Tada H., Shiho O., Kuroshima K., Koyama M., Tsukamoto K. J., Int-