Salvianolic Acid B Protects SH-SY5Y Neuroblastoma Cells from 1-Methyl-4-phenylpyridinium-Induced Apoptosis

Guang ZENG, Tao TANG, Han-Jun WU, Wan-Hui YOU, Jie-Kun LUO, Yuan LIN, Qi-Dong YANG

* Institute of Integrative Medicine, Xiangya Hospital, Central South University; † Key Laboratory of Chinese Gan of State Administration of Traditional Chinese Medicine, Xiangya Hospital, Central South University; and ‡ Department of Neurology, Xiangya Hospital, Central South University

Received February 18, 2010; accepted May 17, 2010; published online May 24, 2010

Parkinson’s disease (PD) is a neurodegenerative disease characterized by a progressive loss of dopaminergic neurons in the substantia nigra, and it is second only to Alzheimer’s disease in neurodegenerative disorders. It is now believed that PD is associated with mitochondrial dysfunction, oxidative stress, and activation of the apoptotic cascade. Therefore, regulation of intracellular reactive oxygen species (ROS) and modification of apoptotic cascades may provide strategies to prevent PD. It has also been reported that neurodegeneration could be relieved by free-radical scavengers or catalases [1–3]. In the study, we investigated the effects of salvianolic acid B (Sal B) on 1-methyl-4-phenylpyridinium (MPP⁺)-treated SH-SY5Y cells, a classic in vitro model for PD. We found Sal B inhibited the loss of cell viability by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The underlying mechanisms of Sal B action were further studied. Treatment of SH-SY5Y cells with MPP⁺ caused a loss of cell viability and mitochondrial membrane potential, condensation of nuclei, elevation in the level of reactive oxygen species (which was associated with cytochrome c release), an increase in the Bax/Bcl-2 mRNA ratio, and activation of caspase-3. Sal B ameliorated the MPP⁺-altered phenotypes. These results indicate that the Sal B protected SH-SY5Y cells against MPP⁺-induced apoptosis by relieving oxidative stress and modulating the apoptotic process. Our findings suggest that salvianolic acid B may be a promising agent to prevent PD.

Key words Parkinson’s disease; salvianolic acid B; 1-methyl-4-phenylpyridinium; SH-SY5Y; antioxidation; neuroprotection

MATERIALS AND METHODS

Drugs and Reagents Dulbecco’s modified Eagle’s medium (DMEM), fetal bovine serum (FBS), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), penicillin, and streptomycin were obtained from Gibco. Rhodamine 123, MPP⁺, 2′,7-dichlorodihydrofluorescein diacetate (DCF-DA), Hoechst 33258, and dimethyl sulfoxide (DMSO) were purchased from Sigma-Aldrich. The Annexin V-fluorescein isothiocyanate (FITC) apoptosis detection kit was purchased from Biosea (Beijing, China). The antibody against cytochrome c was from Santa Cruz Biotechnology, Inc. The antibody against cleaved Caspase-3 (Asp175) was obtained from Beyotime Biotech (Hangzhou, China). Sal B (purity >99%) was purchased from the Chinese National Institute for the Control of Pharmaceutical and Biological Products (Beijing, China).

Cell Culture and Treatment The human neuroblastoma SH-SY5Y cells (Cell Bank, Shanghai Institutes for Biological Sciences, Shanghai, China) were maintained in DMEM supplemented with 10% FBS, penicillin/streptomycin (100 U/ml; 100 μg/ml) in a humidified 5% CO₂ atmosphere at 37 °C. Cells were pretreated with Sal B for 2 h, then the supernatants were replaced by 100 μl DMEM, followed by exposure to MPP⁺ for 24 h. The control cells were treated with the same medium without drugs.

MTT Assay To test whether Sal B had a protective effect on the MPP⁺-treated SH-SY5Y cells, the MTT assay was used. In brief, the pretreated cells were cultured at a den-
sity of 1×10^5 cells/ml in 96-well plates. After 24 h exposure to different concentration of MPP\(^{+}\), (with or without Sal B pretreatment) 10 \(\mu \text{L} \) MTT (2.5 mg/ml in PBS) was added to each well and the cells were incubated at 37 °C for 4 h. The supernatants were carefully removed, 100 \(\mu \text{L} \) DMSO was added to each well to dissolve the precipitate, and the absorbance at 490 nm was measured with a microplate reader (Bio-Rad Model 3550).

Flow Cytometric Detection of Apoptotic Cells After Sal B-pretreated cells were incubated with 500 \(\mu \text{M} \) MPP\(^{+}\) for 24 h, apoptosis was evaluated by an Annexin-V-FITC apoptosis detection kit. Cells were harvested, washed and incubated at 4 °C for 30 min in the dark with annexin-V-FITC and propidium iodide (PI), then analyzed on a FACS Vantage SE flow cytometer (Becton Dickinson).

Staining of Nuclear DNA in Apoptotic Cells with Hoechst 33258 The apoptotic nuclear changes were visualized with Hoechst 33258. After treatment with 500 \(\mu \text{M} \) MPP\(^{+}\) for 24 h, the cells were fixed with 4% paraformaldehyde and stained with Hoechst 33258 (2 \(\mu \text{g/ml}\) for 30 min, then observed with a LSM 510 confocal microscope (Carl Zeiss Inc.).

Measurement of ROS Intracellular ROS were measured with DCF-DA. Cells were incubated with 500 \(\mu \text{M} \) MPP\(^{+}\) for 24 h, then with 10 \(\mu \text{M} \) DCF-DA for 30 min. After washing with PBS, cells were lysed in 1 ml of RIPA buffer and immediately analyzed by fluorescence spectrophotometry at 510 nm.

Measurement of Mitochondrial Membrane Potential

The mitochondrial membrane potential was measured with rhodamine 123, which preferentially partitions into active mitochondria based on the highly negative mitochondrial membrane potential. Depolarization of mitochondrial membrane potential results in the loss of rhodamine 123 and a decrease in intracellular fluorescence. Rhodamine 123 (10 \(\mu \text{M}\)) was added to cells after treatment with Sal B and/or MPP\(^{+}\), as described above. After 30 min in culture at 37 °C, the cells were collected by pipetting, washed twice with PBS, and then analyzed by flow cytometry.

Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR) for Bax and Bcl-2 mRNA

RT-PCR was used to evaluate expression of Bax and Bcl-2 mRNA. After the cells were treated with 500 \(\mu \text{M} \) MPP\(^{+}\) for 24 h, total RNA was extracted using the TRIzol reagent (Invitrogen). First-strand cDNAs were generated by reverse transcription of RNA samples using an oligo (dT) primer. Primer sequences (Sheng-gong, Shanghai, China) are shown below: Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), F: 5’-AATGACCC-CCTTCATTGAC-3’; R: 5’-TCCACGGACTGAGCCGC-3’; Bax, F: 5’-GGATGGCCGTCACAAAGA-3’; R: 5’-GCA-CTCCGGCCAAACAGA-3’; Bel-2, F: 5’-CGACTTCCGC-GAGATGTCAGCGG-3’; R: 5’-ACTTGTGGCAGAT-AGGCACCCAG-3’. Following cDNA synthesis, PCR was performed using the following conditions: 94 °C for 30 s, 57 °C (for GAPDH and Bel-2) or 56 °C (for Bax) for 1 min, and 72 °C for 1 min for 30 cycles. PCR products were electrophoresed on a 2% agarose gel and visualized with ethidium bromide (EB) staining. Relative expression was quantified densitometrically with the GIS-2019 system (Tanon, Shanghai, China), and calculated using the reference bands of GAPDH.

Western Blot Assay for Activated Caspase-3 and Cytochrome c Activated caspase-3 and cytochrome c were detected by Western blot. Treated with 500 \(\mu \text{M} \) MPP\(^{+}\) for 24 h, cells were collected and washed with PBS. For detection of cytochrome c, the cells were lysed for 30 min on ice in buffer (20 \text{mM} \text{HEPES}, pH 7.6, 20% glycerol, 500 \text{mM} \text{NaCl,} 1.5 \text{mM} \text{MgCl}_2, \ 0.2 \text{mM} \text{EDTA}, \ 0.1\% \text{Triton X-100,} \ 1.7 \mu \text{g/ml} \text{aprotinin,} \ 1 \mu \text{M} \text{antipain,} \ 1 \mu \text{M} \text{pepsstatin,} \ 0.5 \mu \text{M} \text{phenylmethylsulfonyl fluoride,} \ 1 \text{mM} \text{DTT} \text{and} \ 0.5\% \text{sodium dodecyl sulfate (SDS))}. \text{Lysates were centrifuged for 30 min at 13600} \times g \text{at} 4 \degree \text{C. The supernatants were removed and the pellets were resuspended in buffer and sonicated for 10 s. For detection of other proteins, cells were lysed in buffer 150 \text{mM} \text{NaCl,} \ 1 \% \text{NP-40,} \ 0.02\% \text{sodium azide,} \ 10 \mu \text{g/ml} \text{phenylmethylsulfonyl fluoride,} \ 50 \text{nm} \text{Tris–HCl (pH 8.0) on ice for} \ 30 \text{min and centrifuged at} 12000 \times g \text{for} \ 2 \text{min at} 4 \degree \text{C. Protein concentrations were determined using the Bradford Assay. Equal amounts of protein samples were resuspended in loading buffer, submitted to} 10\% \text{SDS-polyacrylamide gel electrophoresis (PAGE), and subsequently transferred to polyvinylidene difluoride (PVDF) membrane. After blocked in Tris-buffered saline supplemented with 0.05% Tween-20 and 5% nonfat dry milk, the membrane was incubated with appropriate primary antibodies and a horseradish peroxidase-conjugated secondary antibody, and then visualized with autoradiography film. Quantification was performed using the computerized imaging program Quantity One (Bio-Rad). Data were normalized to the reference bands of} \beta\text{-actin.}

Statistical Analysis Data analysis was completed using the OriginPro 8.0 software (Originlab). Data were expressed as mean±S.E.M. Statistical analysis was performed with one way analysis of variance (ANOVA) followed by post hoc analysis using least significant difference (LSD). \(p<0.01\) were considered to be significant.

RESULTS

Effect of Sal B on MPP\(^{+}\)-Induced Viability Loss in SH-SY5Y Cells In order to investigate the influence of MPP\(^{+}\) on neuronal cell viability, we treated SH-SY5Y cells with various concentrations MPP\(^{+}\) for 24 h and examined cell viability with the MTT assay. Exposure of SH-SY5Y cells to MPP\(^{+}\) induced a reduction in cell viability in a concentration-dependent manner. As cell viability decreased to 58% when cells were treated with 500 \(\mu \text{M} \) MPP\(^{+}\) for 24 h (Fig. 2), 500 \(\mu \text{M} \) MPP\(^{+}\) was utilized in the following trials. Sal B (10—100 \(\mu \text{M}\)) prevented cell viability loss \(p<0.01\) in a concentration-dependent manner (Fig. 3). Therefore, the underlying mechanisms of Sal B action were further investigated.

Effect of Sal B on MPP\(^{+}\)-Induced Apoptosis in SH-SY5Y Cells Apoptotic cells were precisely quantified using...
PI and annexin-V dual staining. The annexin-V-PI- population was regarded as consisting of normal healthy cells, while annexin-V+/PI+ cells were assumed to be in early apoptosis, and annexin-V+/PI- cells were tallied as being in necrosis/late apoptosis. After exposure to 500 µM MPP+ for 24 h, the percentage of early apoptotic cells increased. Preincubation with Sal B (10—100 µM) for 2 h dose-dependently alleviated the apoptosis (Fig. 4). Cells exhibiting reduced nuclear size, chromatin condensation, intense fluorescence, and nuclear fragmentation were considered apoptotic. The untreated SH-SY5Y cell nuclei had a regular ovum shape. Nuclei with an apoptotic profile appeared after exposure to 500 µM MPP+, while Sal B (50, 100 µM) ameliorated the nuclear changes (Fig. 5).

Effect of Sal B on MPP+-Induced Elevation in Intracellular ROS Level in SH-SY5Y Cells To evaluate the effect of Sal B on oxidative stress, we measured the levels of ROS. As shown in Fig. 6, exposure of SH-SY5Y cells to 500 µM MPP+ for 24 h led to a significant increase in the DCF signal compared with the control group. Sal B pretreatment (10—100 µM) inhibited the increase in DCF fluorescence in a concentration-dependent manner.

Effect of Sal B on MPP+-Induced Reduction of the Mitochondrial Membrane Potential in SH-SY5Y Cells After SH-SY5Y cells were exposed to 500 µM MPP+ for 24 h, the rhodamine 123 fluorescence intensity was dramatically weakened (p<0.01), which indicated a reduction in the mitochondrial membrane potential. Pretreatment with Sal B (10—100 µM) protected the cells from the MPP+-induced depression of the mitochondrial membrane potential (p<0.01) (Fig. 7).

Effects of Sal B on Bcl-2 and Bax mRNA Expression in MPP+-Induced SH-SY5Y Cells Bax expression increased significantly in 500 µM MPP+-treated cells, compared with that of control cells. Sal B decreased the Bax expression almost to the normal values; however, the level of Bcl-2 mRNA, which was similar in the MPP+-treated and control cells, did not change following Sal B pretreatment. The Bax/Bcl-2 ratio was increased in MPP+-treated cells relative to control cells; Sal B was found to prevent the increase (Fig. 8). These results indicate that Sal B pretreatment may balance the positive and negative regulators of apoptosis, resulting in increased cell survival.

Effects of Sal B on Activated Caspase-3 Protein Expression in MPP+ Treated SH-SY5Y Cells Following a 24 h-treatment of SH-SY5Y cells with 500 µM MPP+, we detected an increase in activated caspase-3 compared to the level in the control cells. While, additional Sal B (50, 100 µM) resulted in a significant decrease in activated caspase-3 compared with that in the MPP+-treated cells (p<0.01) (Fig. 9).
Effects of Salvianolic Acid B on Cytochrome c Release in MPP⁺ Treated SH-SY5Y Cells

As shown in Fig. 10, 500 μM MPP⁺ significantly induced cytochrome c release from mitochondria into the cytosol. This induction was markedly reversed by Sal B (50, 100 μM) pretreatment (Fig. 10).
The present study has, for the first time, confirmed that Sal B rescues SH-SY5Y cells from MPP⁺-induced apoptosis, which is consistent with the report about its neuroprotective effect in animal models.14)

MPP⁺-treated neuroblastoma SH-SY5Y cells are one of the most commonly used in vitro models to study neurodegenerative events that may occur in PD. In our preliminary experiments, we found 500 μM MPP⁺ and an incubation time of 24 h were optimal time and concentration for the induction of deleterious effects on SH-SY5Y cell viability, which were according with previous research.15,16) To test antiparkinsonian drug Talipexole, cells were treated with 1 mM MPP⁺ for different time duration,17) to test the antioxidation effect of rosiglitazone, cells were treated with 10 μM MPP⁺ for 36 h.18) In some research, cells were exposure to 10 μM MPP⁺ for 48 h to cause maxtoxicity,19) while 48 h of 1 mM MPP⁺ treatment was chosen to induce cell death for experiments to study the antioxidation of Leptin.20) The differences of MPP⁺ concentration and time duration among those researches may be due to different conditions of laboratories.

In this study, we demonstrated that Sal B protected SH-SY5Y cells against MPP⁺-induced cytotoxicity by multiple lines of evidence. The data revealed that Sal B protected cells by reducing MPP⁺-induced cell loss, decreased the number of apoptotic cells, reduced ROS production, stabilized the mitochondrial membrane potential, prevented cytochrome c release and caspase-3 activation, and maintained the Bax/Bcl-2 mRNA ratio.

MPP⁺ has been shown to cause neuronal cell death by inducing mitochondrial dysfunction and increasing ROS production.21) ROS over-production can severely disrupt the mitochondrial membrane potential, resulting in the release of apoptosis-inducing factors and activation of the caspase cascade. In the study, we found that Sal B ameliorated the mitochondrial dysfunction induced by 500 μM MPP⁺. We suggest that Sal B may achieve this function via inhibition of intracellular ROS overproduction (Fig. 6).

Mitochondrial dysfunction can activate the cell death machinery by releasing proapoptotic factors such as pro-caspases, caspase activators (i.e. cytochrome c and Smac/Dia-blo), and caspase-independent factors. Cytochrome c release into the cytosol can induce apoptosis by activation of downstream caspases, such as caspase-3.22) Caspases take part in the apoptotic process in two ways: the death receptor pathway and the mitochondrial apoptotic pathway.23) Caspase-3 acts as an apoptotic executor in both pathways by activating a DNA fragmentation factor to cause cell death. Our data showed that Sal B effectively suppressed MPP⁺-induced nuclear changes, apoptosis (Figs. 4, 5) and activation of caspase-3 (Fig. 9), which could be attributed to its prevention of cytochrome c release (Fig. 10).

The Bcl-2 family of proteins is involved in positive and negative regulation of apoptotic cell death.24) Bel-2 and Bax may control the mitochondrial permeability transition pore or other early mitochondrial perturbations, which can influence the passage of cytochrome c and other apoptosis-inducing factors that trigger activation of the caspase cascade and result in apoptosis.25,26) Cell survival in the early phases of the apoptotic cascade depends mostly on the balance between the pro- and anti-apoptotic proteins of the Bcl-2 family. In this regard, the Bax/Bcl-2 mRNA ratio may be a better predictor of apoptotic fate than the absolute concentrations of either Bax or Bel-2 alone.27) In this study, MPP⁺ treatment led to up-regulation of Bax mRNA expression, although it did not affect the level of Bcl-2 mRNA expression. Consequently, the ratio of the Bax/Bcl-2 mRNA increased signifi-
cantly upon treatment with MPP^+. Importantly, pretreatment with Sal B significantly reduced the expression of Bax but has no impact on Bcl-2 mRNA expression. Summarily, our data support the idea that the MPP^+-induced elevation in the Bax/Bcl-2 mRNA ratio in SH-SY5Y cells was blocked by Sal B. Previous research showed that Salvianolic acid A increased Bcl-2 expression in MPP^+ treated SH-SY5Y cells, suggested the anti-oxidative and anti-apoptotic properties render its neuroprotective effects. In the present study, the Bcl-2 expression changes little under MPP^+ and/or Sal B incubation, but the Bax expression was stabilized by Sal B after MPP^+ treatment.

Sal B is an antioxidant among the most abundant bioactive salvianolic acids in Danshen. It was reported to possess hepatoprotective and antifibrogenic capabilities, inhibit high glucose-induced mesangial cells proliferation and extracellular matrix production, enhance angiogenesis processes, and protect against ischemia–reperfusion injury in the skin, heart, and brain, possibly by inhibiting oxidative stress, and improving energy metabolism. Overall, these results indicate that Sal B protected SH-SY5Y cells against MPP^+-induced apoptosis by relieving oxidative stress and thus modulating the apoptotic process. The potent free radical scavenging ability of Sal B that may partially account for its neuroprotective effects, can largely be attributed to a phenolic hydroxyl group in its structure, based on analyses of their chemical structures (see Fig. 1).

Tian et al. revealed that Sal B could prevent 6-hydroxydopamine induce SH-SY5Y cells apoptosis, another cellular model of PD. They found Sal B reduced the 6-hydroxydopamine-induced increase of caspase-3 activity and cytochrome c release, prevented 6-hydroxydopamine-induced decrease in the Bcl-2/Bax ratio. Liu et al. reported that Sal B protected PC12 cells from hydrogen peroxide-induced cytotoxicity, reduced cell apoptosis and loss of superoxide dismutase, catalase and glutathione peroxidase activities, blocked monolialdehyde production, lactate dehydrogenase release and elevation in intracellular Ca^2+ level and caspase-3 activity, indicated that Sal B exerts neuroprotective effects against H_{2}O_{2} toxicity. Taken these capabilities together, our data indicate that Sal B may be a promising agent to prevent PD. Chen et al. revealed that Sal B protected rats brain against injuries caused by ischemia-reperfusion, by reducing lipid peroxides, scavenging free radicals and improving the energy metabolism, which implied that Sal B may could penetrate the blood–brain barrier. Further studies of the neuroprotective mechanisms of Sal B will be necessary, including mechanism of protein regulation by Sal B, as will be a better understanding of the delivery of Sal B to the brain through the blood–brain barrier.

This report may offer a new clinical strategy for treatment of progressive neurodegenerative diseases such as Parkinson’s.

Acknowledgements This work was supported by grants to T. T. from the Chinese Postdoctoral Science Foundation (2005038224), the Special Postdoctoral Funding Project of Hunan Province (2006FJ4244), the Hunan Provincial Natural Science Foundation of China (07JJ5007) and the Hunan Provincial Project of Traditional Chinese Medicine (2008016).

REFERENCES