Biological and Pharmaceutical Bulletin
Online ISSN : 1347-5215
Print ISSN : 0918-6158
ISSN-L : 0918-6158
Regular Articles
Benzofuran Derivatives Inhibit 11β-Hydroxysteroid Dehydrogenase Type 1 Activity in Rat Adipose Tissue
Daisuke KiyonagaNoriko TagawaYuko YamaguchiMidori WakabayashiToshiaki KogureMasafumi UedaOkiko MiyataYoshiharu Kobayashi
Author information

2012 Volume 35 Issue 8 Pages 1275-1280


Excess glucocorticoids promote visceral obesity and insulin resistance. The main regulator of intracellular glucocorticoid levels are 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), which converts inactive glucocorticoid into bioactive glucocorticoid such as cortisol in humans and corticosterone in rodents; therefore, the inhibition of 11β-HSD1 has considerable therapeutic potential for metabolic diseases including obesity and diabetes. Benzofuran is a key structure in many biologically active compounds such as benzbromarone, malibatol A and (+)-liphagal. The aim of this study was to investigate the inhibitory effect of benzofuran derivatives on 11β-HSD1 in mesenteric adipose tissue from rodents. 11β-HSD1 activity was determined by incubation of rat mesenteric adipose tissue microsomes in the presence of reduced nicotinamide adenine dinucleotide phosphate (NADPH) with and without benzofuran derivatives (Compounds 114). The corticosterone produced was measured by HPLC. More than 40% of 11β-HSD1 inhibition was observed in Compounds 1, 5, 7 and 8. Moreover, Compounds 7 and 8 inhibited the 11β-HSD1 activity in adipose microsomes dose- and time-dependently, as well as in 3T3-L1 adipocytes. Compounds 7 and 8 did not inhibit 11β-HSD type 2 (11β-HSD2), whereas Compounds 1 and 5 inhibited 11β-HSD2 by 18.7% and 56.3%, respectively. Further, a kinetic study revealed that Compounds 7 and 8 acted as non-competitive inhibitors of 11β-HSD1. Ki (nmol/h/mg protein) values of Compounds 7 and 8 were 17.5 and 24.0, respectively, with IC50M) of 10.2 and 25.6, respectively. These data indicate that Compounds 7 and 8 are convincing candidates for seed compounds as specific inhibitors of 11β-HSD1 and have the potential to be developed as anti-obesity drugs.

Information related to the author
© 2012 The Pharmaceutical Society of Japan
Previous article Next article