Biological and Pharmaceutical Bulletin
Online ISSN : 1347-5215
Print ISSN : 0918-6158
ISSN-L : 0918-6158
Regular Articles
The Effect of Sex Hormones on Peroxisome Proliferator-Activated Receptor Gamma Expression and Activity in Mature Adipocytes
Hiromi Sato Hana SugaiHiroshi KurosakiMomoko IshikawaAsami FunakiYuki KimuraKoichi Ueno
Author information
JOURNAL FREE ACCESS FULL-TEXT HTML

2013 Volume 36 Issue 4 Pages 564-573

Details
Abstract

Peroxisome proliferator-activated receptor (PPAR) γ plays a major role in the regulation of lipid and carbohydrate metabolism. Pioglitazone is a PPARγ agonist that is widely used for the treatment of type 2 diabetes mellitus. However, female patients have been reported to experience stronger efficacy and adverse effects than male patients. This study evaluated the effects of sex hormones on PPARγ expression and activity in adipocytes. Mouse 3T3-L1 preadipocytes were used after being grown into matured adipocytes. The sex hormones 17β-estradiol (E2), testosterone (T), or 5α-androstan-17β-ol-3-one (dihydrotestosterone; DHT) were added to the matured adipocytes and the cells were then maintained for short (24–72 h) or long (1- or 2-weeks) periods. E2 significantly upregulated PPARγ protein expression in a concentration-dependent manner after extended exposure, whereas T and DHT did not have such an effect. When cells were co-treated with pioglitazone and E2, PPARγ protein expression significantly increased in an E2-dependent manner, whereas this expression seemed to be reduced by pioglitazone mono-treatment and co-treatment with DHT at higher concentrations. The secretion levels of adiponectin protein, a major indicator of PPARγ activity, were significantly decreased by DHT, but were not affected by E2. Finally a luciferase assay was performed using a PPAR response element-Luk reporter gene. Transcriptional activity was not changed by any of single sex hormone treatment, but was significantly downregulated by co-treatment with pioglitazone and DHT. Taken together, our results suggest that sex hormones may influence PPARγ expression and function, which may explain the observed sex-specific different effect of pioglitazone.

Content from these authors
© 2013 The Pharmaceutical Society of Japan
Previous article Next article
feedback
Top