Challenges of Drug Delivery Systems That Contribute to Cancer Chemotherapy

Alteration of Tumor Microenvironment for Improved Delivery and Intratumor Distribution of Nanocarriers

Tatsuhiro Ishida* and Hiroshi Kiwada

Department of Pharmacokinetics and Biopharmaceutics, Institute of Health Biosciences,
The University of Tokushima; Tokushima 770–8503, Japan.
Received January 3, 2013

Nanocarrier-based cancer chemotherapeutics are thought to increase therapeutic efficiency and reduce the side effects of associated chemotherapeutic agents by altering the agents’ pharmacokinetics and tissue distribution following intravenous administration. In spite of these favorable properties, nanocarrier-based cancer chemotherapeutics are not always effective because of their heterogeneous intratumoral localization. Homogeneous distribution of nanocarriers in a tumor would improve the efficacy of nanocarrier-based cancer chemotherapeutics. In this article, we describe and discuss some trials that attempt to manipulate the barriers in the tumor microenvironment that hinder extravasation through the tumor vasculature and penetration of nanocarriers in solid tumors. Alterations of the tumor microenvironment that relate directly to the intratumoral distribution of nanocarriers may be potential strategies to improve the delivery of nanocarrier-based cancer chemotherapeutics.

Key words nanocarrier; enhanced permeability and retention effect; tumor microenvironment; anticancer therapy

1. INTRODUCTION

Conventional chemotherapy is currently still problematic because of the disproportional relationship between antitumor effects and adverse effects. Anticancer agents are easily distributed in the patient’s body and indiscriminately reach not only tumors, but also normal organs and tissues. Therefore, the development of a suitable tumor-selective drug delivery system is needed to avoid the undesirable systemic side effects of anticancer agents. The most effective strategy is to exploit the anatomical and pathophysiological abnormalities of tumor tissue, particularly the tumor vasculature. Nanoparticles such as polymeric micelles and liposomes, which have a particle size of 50–200 nm, have been found to effectively accumulate in solid tumors due to the abnormal features of the tumor microenvironment. This characteristic is generally known as the “enhanced permeability and retention (EPR)” effect (Fig. 1). In this article, we describe and discuss some trials that attempt to manipulate the barriers in the tumor microenvironment that hinder extravasation through the tumor vasculature and penetration of nanocarriers in solid tumors. Alterations of the tumor microenvironment that relate directly to the intratumoral distribution of nanocarriers may be potential strategies to improve the delivery of nanocarrier-based cancer chemotherapeutics.

Key words nanocarrier; enhanced permeability and retention effect; tumor microenvironment; anticancer therapy

2. BARRIERS TO ACCUMULATION OF NANO CARRIER S IN THE TUMOR MICROENVIRONMENT

2.1. Tumor Vasculature and Blood Flow

The vasculature in the solid tumor is structurally and functionally abnormal, leaky, tortuous, dilated and saccular, and has a haphazard pattern of interconnection. These abnormalities contribute to spatial and temporal heterogeneity in tumor blood flow. In addition, solid pressure generated by proliferating tumor cells compresses intratumor blood and lymphatic vessels. Such vascular and lymphatic abnormalities in solid tumors are a major cause of the abnormal tumor microenvironment. With respect to tumor vascular architecture, the vessel wall structure is very abnormal. Large interendothelial junctions, increased numbers of permeable fenestrations, and a lack of normal basement membrane are often found in tumor vessels. In addition, perivascular cells have abnormal morphology and heterogeneous associations with tumor vessels. Consistent with these structural abnormalities in the tumor vessel wall, the vascular permeability of solid tumor vessels relating to the EPR effect is generally higher than that of most normal vessels, resulting in enhanced accumulation of nanocarriers. However, extravasation of nanocarriers is limited by the cut-off size of the “pores” in the walls of tumor ves-

* To whom correspondence should be addressed. e-mail: ishida@tokushima-u.ac.jp © 2013 The Pharmaceutical Society of Japan
sels, which vary from 100 nm to 2 µm depending on the tumor type, its growth location, and whether it is growing or regressing.3,13) Nanocarriers with a mean diameter of ca. 200 nm are preferred for tumor targeting carrier systems.

2.2. Tumor Substance and Extracellular Matrix

To deliver the associated-anticancer agents to tumor cells, nanocarriers require their transport from the bloodstream to the tumor interstitium, and then diffuse through the tumor interstitium. The diffusion of nanocarriers is strongly affected by the extracellular matrix (ECM) composition and by its geometry.14–16) Compared with normal tissues, the tumor interstitium is characterized by an altered ECM and an increased number of fibroblasts that extensively synthesize adhesion molecules.17) The ECM components vary greatly among tumors in both amount and composition.18) Tumor-associated ECM is composed mainly of type 1 collagen, glycosaminoglycans such as hyaluronan, and proteoglycans such as decorin and glycol protein.19,20) and these ECM components form a complex structured gel. The resistance to interstitial flow is strongly linked to glycosaminoglycans, and especially hyaluronan, in the interstitial space of tumors.15,21) Although the diffusion rate of nanocarriers depends, of course, on the tumor type and the size and charge of the nanoparticles,16,22,23) the ECM is one of the major barriers to the diffusion of nanocarriers in the tumor interstitium.

3. BREAKTHROUGH TO ENHANCE EXTRAVASATION AND SUBSEQUENT DIFFUSION OF NANOCARRIERS IN TUMOR

3.1. Increased Blood Flow in Tumors

Diphtheria Toxin Treatment

Treatment with diphtheria toxin, which is much less cytotoxic to mouse cells than to human ones, caused cellular death (apoptosis) in human-tumor xenografts grown in mice,24) while the treatment showed no effect on murine tumors. As a consequence, diphtheria toxin treatment led to a greater fraction of blood and lymphatic vessels with an open lumen in human tumors.25) This study confirms that proliferating tumor cells cause intratumor vessels, particularly those without supportive stromal structures, to collapse, thus leading to impaired blood flow. Tumor-selective cytotoxic therapy, which affects growing vascular endothelial cells, growing smooth muscle cells, and growing tumor cells, may result in more homogeneous blood flow in tumors and thereby enhance the efficient delivery of nanocarrier-based drugs to tumor tissue.

Angiotensin-II (AT-II)-Induced Hypertension

It has been reported that the smooth muscle layer, which plays a vital role in regulating blood pressure and flow, is lost in vasculature in some parts of tumor tissue. In normal blood vessels, angiotensin-II (AT-II), a vascular mediator, causes hypertension (increasing blood pressure and flow rate) via AT-II receptors.
on vascular smooth muscle cells. However, under these conditions the blood flow volume remains constant in normal tissue because of the existence of smooth muscle actin.26–28 On the other hand, the tumor blood vessels cannot regulate the blood flow volume because of the absence of the smooth muscle layer. Consequently, blood flow volume in tumor tissue increases 2–6 times in proportion to elevated blood pressure.26 The induction of the hypertensive state by AT-II is, therefore, expected to augment the EPR effect and, thereby, the delivery of macromolecular drugs and nanocarriers.6,7,29

3.2. Enhanced Extravasation of Nanoparticles from Tumor Blood Circulation

Inhibition of Transforming Growth Factor-β (TGF-β) Signaling

TGF-β is known as a multifunctional cytokine, which regulates the growth, differentiation, migration, adhesion, and apoptosis of various types of cells. TGF-β inhibits the growth and migration of blood vascular endothelial cells \textit{in vitro}, whereas it induces angiogenesis \textit{in vivo}.30 Mice lacking certain components related to TGF-β signaling (e.g., TGF-β1, TGF-β2, or TGF-β3) exhibited abnormalities in blood vessels.31–33 Although the dextran (2 MDa, 50 nm) remained mostly within the intravascular space in the control tumor, the use of low dose TGF-β inhibitor resulted in extravasation and a far broader distribution of the dextran around the tumor neovasculature.34,35 These findings suggest that low-dose TGF-β inhibitor can maintain blood flow in the tumor vasculature and simultaneously induce extravasation of macromolecules. TGF-β inhibitor co-administered with DXR-containing PEGylated liposome and polymeric micelles significantly enhanced intratumoral accumulation of DXR, in a xenograft murine model of human BxPc3 cells.36 Consequently, a strategy in combination with TGF-β signaling could be a breakthrough in chemotherapy delivered by nanocarriers in solid tumors.

Tumor Necrosis Factor (TNF)-α

TNF-α is one of the most thoroughly investigated cytokines and affects tumor-associated vasculature, not the vascularization of normal tissue.37 Seynhaeve \textit{et al.}38 indicated that the alteration of tumor vasculature caused by TNF-α led to further abnormalities—in particular, vascular permeability in the tumor—and that treatment of low-dose TNF-α in combination with i.v. administration of PEGylated lipidosome facilitated extravasation of the liposome from blood vessels and more homogeneous distribution in solid tumors. This revealed that treatment with TNF-α not only increases the leakiness of some tumor vessels, but also renders more vessels permeable to nanocarriers such as liposomes 100–200 nm in mean diameter, while leaving the vascular function \textit{e.g.}, flow intact. They finally demonstrated an improved tumor response due to a more homogeneous distribution of anticancer drug-containing nanocarriers in the tumor.

Vascular Endothelial Growth Factor (VEGF)

VEGF is considered the central factor in both physiological and pathological angiogenesis.39,40 Its receptors are predominantly expressed on neovasculature in tumors. VEGF has vasoactive properties and is 50,000 times more potent than histamine in increasing permeability.41,42 Together with angiopoietins, VEGF regulates the interaction of endothelial cells with other endothelial cells, pericytes and basal membranes. Hence, VEGF triggers dissociation of the endothelial cells, resulting in leakage and the generation of edema.43–45 So, the exogenous addition of VEGF to hypopermeable vessels could be used to increase transvascular transport of macromolecules, including nanocarriers, in these regions.31

Nitric Oxide (NO) NO, synthesized from l-arginine by NO synthase (NOS), is a well-known vasoactive agent that increases vascular permeability in tumors.46–48 Because of such vasoactivity, NO may increase the EPR effect against nanocarriers by widening the endothelial gaps of tumor-feeding arteries. In one such case, in humans, treatment with the NO-releasing agent isosorbide dinitrate enhanced the opening of the tumor-feeding artery, and more drug entered the tumor.49 This technique, plus co-treatment with AT-II, further enhanced the site-specific delivery of SMANCS–Lipiodol1 to the tumor.49

3.3. Augmentation of Distribution of Nanocarriers in Solid Tumor

Alteration of Extracellular Matrix (ECM)

Composition Nanocarriers must extravasate from blood and penetrate through the ECM in the tumor interstitial space in a tumor. The movement of nanocarriers through the ECM relies on passive diffusive transport,50 but the movement \textit{via} passive diffusion becomes less efficient for nanocarriers. Collagenase treatment efficiently digests collagen in tumor ECM, and was found to increase macromolecule diffusion in tumors.21,51,52 Digestion of type I collagen by collagenase produced a 2-fold increase in the diffusion of 10 kDa dextran at all tumor depths and similar increase in the diffusion of 500 kDa dextran and albumin, but only in superficial tumors. These indicate that collagen in the interstitial space of tumors plays an important role in regulating the initial distribution of macromolecules in tumors.

Digestion of decorin, a major ECM protein, by cathepsin C produced a more substantial increase in the diffusion of 500 kDa dextran deeper in tumor tissue.53 Decorin plays a role as an important determinant of macromolecule diffusion in tumor tissue ECM. Decorin digestion may produce a widening of collagen interfibrillar spaces.54 This strongly indicates that decorin is a target to enhance macromolecule diffusion in tumors.

Digestion of hyaluronic acid (HA) by hyaluronidase administration was found to enhance the therapeutic efficacy of antitumor agents associated with nanocarriers.55,56 Hyaluronidase treatment increased the tumor uptake and improved the distribution of liposomal DXR.57 On the other hand, Magzoub \textit{et al.}58 reported that digestion of hyaluronan slowed macromolecule diffusion in tumor tissue. This discrepancy with respect to the consequences of hyaluronidase treatment is not well understood. Further research is needed.

Creation of Void Space in Extravascular-Interstitial Compartments in Tumors

The existence of ECM is not the only barrier to the diffusion of nanocarriers through tumor interstitium. The narrow spacing of ca. 20 nm between tumor cells also hinders the penetration of most nanoparticles. Nagano \textit{et al.}59 tested whether the void spaces, enlarged due to tumor cell apoptosis, enhance the initial penetration of microspheres (100 nm) in tumors. Tumor cell apoptosis was induced by treatment with doxycycline-regulated expression of CD8/caspase-8, paclitaxel, or paclitaxel plus tumor necrosis factor–related apoptosis-inducing ligand (TRAIL). In the control tumor, the microspheres were restricted to small areas in the tumor center. By contrast, in the treated tumor, the microspheres were distributed in larger areas and found in the periphery of the tumor. Their results suggest that induction of apoptosis and the resulting void space enlargement in the tumor facili-
tate penetration of nanoparticles into the tumor tissue.

Treatment with Chemotherapeutic Agents Paclitaxel tu-
mor priming promoted the interstitial transport of nanoparti-
cles, because such priming reduced the tumor cell density as
a result of cellular death, expanded the microvessel diameter,
and increased tumor perfusion.69

We recently reported that metronomic oral cyclophos-
phamide (CPA) dosing promoted enhanced accumulation of
PEGylated liposomes in solid tumor tissue and increased the
therapeutic efficacy of DXR associated with PEGylated li-
posomes.61,62 We assume that this enhancing effect on the EPR
effect reflects the transient increase in density of microvessels
in the tumor tissues. Anti-angiogenesis induced by metronom-
ic CPA dosing might cause tumor tissue hypoxia by diminish-
ing blood flow, and the resulting hypoxia and acidification of
the surrounding tissue might induce a transient increase in the
density of microvessels, consequently creating higher perme-
ability for the PEGylated lipidome in the tumor.

Similar tumor augmentation to CPA was observed with
metronomic S-1 dosing.63,64 S-1 is a novel oral fluoropyrimidine
derivative and consists of the three pharmacological agents
tegafur (TF), 5-chloro-2,4-dihydroxypyrimidine (cdHP) and
potassium oxonate (oxo) in a molar ratio of 1 : 0.4 : 1.64 Its
ability for the PE gylated liposome in the tumor.

density of microvessels, consequently creating higher perme-
ability of the tumor tissue. Anti-angiogenesis induced by metronom-
ic cPA dosing might cause tumor tissue hypoxia by diminish-
ing blood flow, and the resulting hypoxia and acidification of
the surrounding tissue might induce a transient increase in the
density of microvessels, consequently creating higher perme-
ability of the PEGylated lipidome in the tumor.

We here described the importance of alteration of the tumor
microenvironment which augments the nanocarriers’ extrava-
dation and diffusion process to promote enhanced therapeutic
effects of the payloads in the nanocarriers.

The approach using clinically approved chemotherapeutic
agents, such as Paclitaxel, CPA and S-1, to augment the tumor
microenvironment may be considered a breakthrough in drug
delivery strategies with nanocarriers and may be hopefully
translated into clinical settings.

4. CONCLUSION

The therapeutic efficiency of cancer treatment by means of
nanocarriers is clearly dependent on effective delivery of the
encapsulated anticancer agents into tumors. However, the ef-
fectiveness of delivery is often impaired because of barriers
in the tumor microenvironment, as described in this chapter.
We here described the importance of alteration of the tumor
microenvironment which augments the nanocarriers’ extrava-
sation and diffusion process to promote enhanced therapeutic
effects of anticancer agents associated with nanocarriers.

Innovations in the strategies to control the tumor microen-
vironment may lead to a breakthrough in nanocarrier-based
chemotherapy.

Acknowledgement This work was supported in part by a
Grant-in-Aid for Scientific Research (B) (24390010), the Min-
istry of Education, Culture, Sports, Science and Technology
of Japan.

REFERENCES

1) Iyer AK, Khaled G, Fang J, Maeda H. Exploiting the enhanced
permeability and retention effect for tumor targeting. Drug Discov.

3) Hynes SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin
VP, Jain RK. Regulation of transport pathways in tumor vessels:

4) Yuan F, Leunig M, Berk DA, Jain RK. Microvascular permeability
of albumin, vascular surface area, and vascular volume measured
in human adenocarcinoma LS174T using dorsal chamber in SCID

5) Matsumura Y, Maeda H. A new concept for macromolecular thera-
peutics in cancer chemotherapy: mechanism of tumoritropic accumu-
lation of proteins and the antitumor agent smancs. Cancer Res.,

6) Maeda H, Nakamura H, Fang J. The EPR effect for macromolecular
drug delivery to solid tumors: Improvement of tumor uptake, lower-
ing of systemic toxicity, and distinct tumor imaging in vivo. Adv.

7) Maeda H. Macromolecular therapeutics in cancer treatment: the

8) Padera TP, Stoll BR, Toorodman JB, Capen D, di Tomaso E, Jain
RK. Pathology: cancer cells compress intratumour vessels. Nature,

9) Chang YS, di Tomaso E, McDonald DM, Jones R, Jain RK, Munn
LL. Mosaic blood vessels in tumors: frequency of cancer cells in

10) di Tomaso E, Capen D, Haskell A, Hart J, Logie JJ, Jain RK,
McDonald DM, Jones R, Munn LL. Mosaic tumor vessels: cellular
basis and ultrastructure of focal regions lacking endothelial cell

11) McDonald DM, Choyke PL. Imaging of angiogenesis: from micro-

12) Winkler F, Kozin SV, Tong RT, Chae SS, Booth MF, Garkavtsev I,
Xu L, Hicklin DJ, Fukushima D, di Tomaso E, Munn LL, Jain RK.
Kinetics of vascular normalization by VEGFR2 blockade governs
brain tumor response to radiation: role of oxygenation, angioptoi-
erin-1, and matrix metalloproteinases. Cancer Cell, 6, 553–563
(2004).

13) Monsky WL, Fukushima D, Gohongi T, Aucukiewicz M, Wiche HA,
Torchilin VP, Yuan F, Jain RK. Augmentation of transvascular
transport of macromolecules and nanoparticles in tumors using vas-

14) Graff BA, Bjornaes I, Rofstad EK. Macromolecule uptake in human
melanoma xenografts. relationships to blood supply, vascular den-
sity, microvessel permeability and extracellular volume fraction.

15) Levick JR. Flow through interstitium and other fibrous matrices. Q.

16) Pluen A, Boucher Y, Ramanujan S, McKee TD, Gohongi T, di
Tomaso E, Brown EB, Izuim Y, Campbell RB, Berk DA, Jain RK.
Role of tumor-host interactions in interstitial diffusion of macro-

"Artificial lymphatic system": a new approach to reduce interstitial
hypertension and increase blood flow, pH and pO2, in solid tumors.

18) Ohtani H. Stromal reaction in cancer tissue: pathophysiologic sig-

