Biological and Pharmaceutical Bulletin
Online ISSN : 1347-5215
Print ISSN : 0918-6158
ISSN-L : 0918-6158
Regular Articles
3β-Angeloyloxy-8β,10β-dihydroxyeremophila-7(11)-en-12,8α-lactone Inhibits Lipopolysaccharide-Induced Nitric Oxide Production in RAW264.7 Cells
Xiao SunChangyou JiangLisha MaXinxin ZhaoJuanjuan ChangBeibei ZhengLin LiWeidong XieXia Li
著者情報
ジャーナル フリー HTML
電子付録

2015 年 38 巻 6 号 p. 836-843

詳細
抄録

Farfugium japonicum (L.) KITAM, named “Lian-Peng-Cao” in China, has been traditionally used in Chinese folk medicine to treat sore throat, cold and cough due to its anti-inflammatory properties. In this study, the anti-inflammatory action of 3β-angeloyloxy-8β,10β-dihydroxyeremophila-7(11)-en-12,8α-lactone (FJ1) isolated from Farfugium japonicum and its molecular mechanism in RAW264.7 cells were investigated. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed that FJ1 with or without 3 µg/mL lipopolysaccharide (LPS) had no significant cytotoxicity in RAW264.7 cells. The production of nitric oxide (NO) was identified with a Griess reagent kit. The mRNA expression of inducible nitric oxide synthase (iNOS) and cytokines, including tumor necrosis factor α (TNF-α) and cyclooxygenase-2 (COX-2), was measured by real-time polymerase chain reaction (PCR). Reactive oxygen species (ROS) production was detected by flow cytometry analysis. Western blot was used to examine the protein expression of nuclear factor-kappa B (NF-κB)/p65, inhibitor of kappa B (IκB)-α, phosphorylated IκB-α (p-IκB-α), mitogen-activated protein kinase (MAPK) molecules, iNOS, and TNF-α. We discovered that FJ1 possesses anti-inflammatory effects that inhibit the release of LPS-stimulated pro-inflammatory cytokines, including NO and ROS. The molecular mechanism of FJ1-mediated anti-inflammation is associated with decreasing phosphorylation of MAPK molecules, including extracellular signal-related kinase 1/2 (ERK1/2), p38 MAPK, and c-Jun NH2-terminal kinase (JNK), FJ1 also reverses IκB degradation and attenuates the mRNA and protein expression of NF-κB-related downstream inducible enzymes and cytokines, such as iNOS, TNF-α in RAW264.7 cells. The results suggest that FJ1 has anti-inflammatory properties, which indicates that F. japonicum can be utilized to treat inflammatory diseases. The potential mechanism is associated with the NF-κB and MAPK activation pathways in LPS-stimulated macrophages.

著者関連情報
© 2015 The Pharmaceutical Society of Japan
前の記事 次の記事
feedback
Top